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Chapter 1

Conformal Symmetry

1.1 Introduction

Conformal symmetry is, in essence, the symmetry of shapes without scales. In Euclidean geometry, this is
often described as “angle-preserving” symmetry. While this definition is correct in a purely spatial setting, it
becomes less illuminating once we step into relativistic physics, where time is on equal footing with space. The
notion of an “angle” between two events separated in time is not geometrically well-defined in the same way,
so we need a more general formulation.

A more robust way to think about conformal transformations is that they are transformations which preserve
the metric up to a local rescaling. That is, they preserve the light-cone structure of spacetime, and hence
the causal relations, but may change distances by position-dependent factors:

g′µν(x
′) = Ω(x) gµν(x), Ω(x) > 0.

Here, Ω(x) is the local scaling factor, and Ω(x) = 1 corresponds to an isometry. This definition works in
both Euclidean and Lorentzian settings, and it makes clear why conformal transformations generalize ordinary
Poincaré symmetries: they allow stretching of spacetime while preserving angles and null directions.

In flat space, an important special case is the global scaling transformation:

xµ −→ λxµ,

which is not a mere relabeling of coordinates (i.e., not just a diffeomorphism), but a genuine change in the
geometry. Under such a transformation, the ratios of lengths along a direction are preserved, and therefore
angles are unchanged. This property underlies the term “conformal.”

The study of Conformal Field Theory (CFT) leverages this symmetry in a very different way from
conventional Quantum Field Theory (QFT). In QFT, one typically begins with a Lagrangian and derives
correlation functions from the equations of motion and perturbation theory. In CFT, by contrast, the symmetry
itself is so constraining that it often determines the form of correlation functions without reference to a specific
Lagrangian. This leads naturally to the conformal bootstrap program, in which the consistency conditions
of conformal symmetry, unitarity, and the operator product expansion are used to solve the theory.

Before we can use these powerful tools, it is important to distinguish conformal transformations from two
related but conceptually different ideas: Weyl rescalings and diffeomorphisms. We will examine these one
by one in the next section.

General coordinate invariance (diffeomorphism)

Classical field theories can possess a variety of symmetries. One symmetry we will assume here is general coor-
dinate invariance. Using the action principle, this symmetry can be used to show that the energy–momentum
tensor is conserved.

In general, the energy–momentum tensor is defined through the variation of the action S under changes in
the space–time metric:

gµν → gµν + δgµν .

By definition,

δS =
1

2

∫
ddx
√
g Tµν δgµν .

5
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If the theory is invariant under general coordinate transformations, one can show that

(Tµν);ν = 0 ,

where, as usual in general relativity, “; ν” denotes the covariant derivative. In flat coordinates, this condition
reduces to

∂νT
µν = 0 .

Weyl invariance

In addition to general coordinate invariance, many field theories possess another powerful symmetry: Weyl
invariance. While diffeomorphism invariance constrains how the metric responds to arbitrary coordinate
changes, Weyl invariance instead concerns how the theory behaves under local rescalings of the metric. Under
a Weyl transformation, the metric changes as

gµν(x)→ Ω(x) gµν(x) ,

or, in infinitesimal form,

gµν(x)→ gµν(x) + ω(x) gµν(x) .

The condition for the action to remain invariant under such a transformation can be expressed in terms of the
energy–momentum tensor. Substituting δgµν = ω(x)gµν(x) into the earlier definition, we find

δS =
1

2

∫
ddx
√
g Tµ

µ ω(x) .

Since this must hold for arbitrary functions ω(x), we conclude that the condition for Weyl invariance is

Tµ
µ = 0 .

Thus, just as diffeomorphism invariance implies the covariant conservation of the energy–momentum tensor,
Weyl invariance implies that the energy-momentum tensor must be traceless.

Conformal invariance

1.1.1 Conformal Transformations

A conformal transformation can be defined as a coordinate transformation that acts on the metric as a Weyl
transformation. Consider a general coordinate transformation

x→ x′, xµ = fµ(x′) .

The metric then transforms as

gµν(x)→ g′µν(x
′) =

∂fρ

∂x′µ
∂fσ

∂x′ν
gρσ
(
f(x′)

)
.

We now require that the transformed metric be proportional to the original one. Rotations and translations
clearly satisfy this condition: they leave the metric unchanged and hence preserve all inner products

v · w ≡ vµgµνw
ν .

They are therefore part of the conformal group. More generally, any coordinate transformation satisfying the
above proportionality preserves all angles,

v · w√
v2 w2

,

which is the origin of the term “conformal.” Later in this chapter we will determine all such transformations
explicitly.

If a field theory has a conserved and traceless energy–momentum tensor, it is invariant under both general
coordinate transformations and Weyl transformations. Let the action be

S =

∫
ddxL

(
∂x, gµν(x), ϕ(x)

)
.
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Here, ϕ denotes any matter field, while the metric gµν is written separately due to its special rôle. We have
also explicitly indicated spacetime derivatives in the Lagrangian.

General coordinate invariance implies

S = S′ ≡
∫
ddx′ L

(
∂x′ , g′µν(x

′), ϕ′(x′)
)
,

where g′µν is as given above, and the transformation of ϕ depends on its spin. For a tensor field of rank n one
has

ϕ′µ1...µn
(x′) =

∣∣∣∣ ∂f∂x′
∣∣∣∣
∆
d ∂fν1

∂x′µ1
· · · ∂f

νn

∂x′µn
ϕν1...νn

(
f(x′)

)
, (1.1)

where ∆ is the scaling dimension of the field. Fields that transform according to Eq. (1.1) under conformal
transformations are called conformal fields, or equivalently, primary fields.

In particular, for a scalar ϕ(x) we have simply ϕ′(x′) = ϕ(f(x′)). For the derivative of a scalar:

∂

∂xµ
ϕ(x)→ ∂

∂x′µ
ϕ′(x′) =

∂fν

∂x′µ
∂

∂fν
ϕ(f(x′)) ,

which transforms as a vector. (However, note that nth-order ordinary derivatives do not transform as rank-n
tensors; this holds only for covariant derivatives.)

If the coordinate transformation x→ x′ is of the above type, we can use Weyl invariance of the action
to bring the metric back to its original form. This yields

S = S′′ ≡
∫
ddx′ L

(
∂x′ , gµν(f(x

′)), ϕ′(x′)
)
=

∫
ddx′ L

(
∂x′ , gµν(x), ϕ

′(x′)
)
.

This is the statement of conformal symmetry of the action. We should note that in some cases, an isometry
of one metric can act as a conformal transformation for a different metric. In such situations, Weyl rescaling
is not needed, since the transformation already preserves the metric under consideration. This happens, for
example, in de Sitter (dS) and anti–de Sitter (AdS) spacetimes, where certain isometries correspond to conformal
transformations of the induced boundary metric.

If we begin with a flat metric gµν = ηµν , the background metric remains unchanged under such transfor-
mations.1 This allows us to define conformal transformations for theories in flat space that are not coupled
to gravity. We may then ignore general coordinate invariance and start with an action in which no dynamical
metric appears.

In this flat-space setting, conformal invariance means that the action is unchanged when we integrate the
same Lagrangian (or any scalar physical quantity) written in terms of the transformed fields ϕ′(x′) over the
new coordinates x′.

In d = 2 dimensions, this is not really a restriction. A general 2D metric has three independent components:
g11(x), g22(x), and g12(x) = g21(x). A general coordinate transformation provides two functions f1(x) and f2(x)
that can be used to set g12(x) = 0 and g11(x) = ±g22(x) (depending on the signature). The metric can then be
written in the form g(x) ηµν , which is called conformal gauge. A Weyl transformation can remove the remaining
factor g(x), bringing the metric to the form ηµν .

In more than two dimensions, this procedure does not work in general, so restricting to flat space truly
limits us to non-gravitational theories. Even in two dimensions, conformal gauge can be chosen only locally
in general, meaning CFT can be applied in coordinate patches, but extra data may be needed to describe the
theory globally.

1.2 Infinitesimal Conformal Transformation

The fundamental essence of conformal transformations resides in their infinitesimal form, which serves as a
crucial tool for investigating how fields transform under these symmetries. It plays a pivotal role in defining
the generator of the conformal group and, subsequently, constraining the set of possible correlators that are
compatible with conformal symmetry. Any infinitesimal transformation can be expressed as:

x′µ = xµ + ϵ µ(x)
infinitesimal

1In perturbation theory, we often describe physics on a perturbed manifold as that of tensor fields living on a background
manifold. In this case, the conformal transformation is performed on the background metric, and the change in the perturbation is
again dictated by the Killing equation. We first apply the coordinate transformation to the full metric, and then perform a Weyl
rescaling to restore the background metric to its original form.
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and subsequently,
xµ = x′µ − ϵµ(x)

therefore, the metric transforms like:

g′µν =
∂xα

∂x′µ︸ ︷︷ ︸
δαµ−∂µϵ

α(x)

∂xβ

∂x′ν
gαβ

=

[
δαµ −

∂ϵα(x)

∂x′µ

] [
δβν −

∂ϵβ(x)

∂x′ν

]
gαβ

= δαµδ
β
ν gαβ − δβν ∂µϵα(x)gαβ − δαµ∂νϵβ(x)gαβ +O(ϵ2)

Ω(x)gµν = gµν − ∂µϵν − ∂νϵµ

In the third step, we used chain rule on ϵα(x) and ignored O((∂ϵ)2) terms. From the last line, it is reasonable
to expect that:

gµν + ∂µϵν + ∂νϵµ = [1 + f(x)]gµν

∂µϵν(x) + ∂νϵµ(x) = f(x)gµν (1.2)

Contracting Indicies

∂µϵµ(x) + ∂µϵµ(x) = f(x)δµµ

2(∂ · ϵ) = d f(x)

dimension of spacetime

f(x) =
2

d

∂ϵµ(x)

∂xµ

Substituing back in (1.2)

∂µϵν(x) + ∂νϵµ(x) =
2

d
(∂ · ϵ) gµν (1.3)

Up until now, we have no made any crude assumption. However before we proceed, we will assume that the
metric is Euclidean. Now, we operate on both sides by ∂ν

∂

∂x′ν
[∂µϵν(x) + ∂νϵµ(x)] =

∂

∂x′ν

(
2

d
∂ · ϵ(x) gµν

)assuming flat metric

∂µ ∂
νϵν︸︷︷︸
∂·ϵ

+ ∂ν∂ν︸ ︷︷ ︸
□

ϵµ =
2

d
gµν∂

ν∂ · ϵ

∂µ(∂ · ϵ) +□ϵ =
2

d
∂µ(∂ · ϵ)

Operating by ∂ν

∂ν [∂µ(∂ · ϵ) +□ϵ] = ∂ν

[
2

d
∂µ(∂ · ϵ)

]
(
1− 2

d

)
∂ν∂µ(∂ · ϵ) +□(∂νϵµ) = 0 (1.4)

under relabeling µ↔ ν (
1− 2

d

)
∂µ∂ν(∂ · ϵ) +□(∂µϵν) = 0 (1.5)

adding (1.4) and (1.5)

2

(
1− 2

d

)
∂µ∂ν(∂ · ϵ) +□[∂µϵν(x) + ∂νϵµ(x)︸ ︷︷ ︸

2
d (∂·ϵ)gµν

] = 0

(
1− 2

d

)
∂µ∂ν(∂ · ϵ) +

1

d
□(∂ · ϵ)gµν = 0
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[gµν□+ (d− 2)∂µ∂ν ] (∂ · ϵ) = 0 (1.6)

Contracting the indicies

[d□+ (d− 2)□](∂ · ϵ) = 0

2(d− 1)□(∂ · ϵ) = 0

hence,

(d− 1)□(∂ · ϵ) = 0 (1.7)

if d = 1 =⇒ any ϵµ(x) satisfies (1.7), therefore, is conformal transformation. It is interesting to note that any
1D QFT is conformal field theory, but for our purpose it’s not very useful. We will be concerned with d ̸= 1
for the rest of this notes unless stated otherwise. Consider the action of ∂α on (1.3) and then cyclic relabeling
of incidies as α→ µ→ ν

∂α[∂µϵν(x) + ∂νϵµ(x)] =
2

d
∂αgµν(∂ · ϵ) (1.8)

∂µ[∂νϵα(x) + ∂αϵν(x)] =
2

d
∂µgνα(∂ · ϵ) (1.9)

∂ν [∂αϵµ(x) + ∂µϵα(x)] =
2

d
∂νgαµ(∂ · ϵ) (1.10)

Adding the first two equation and subtracting from the last, we get [(1.8) + (1.9)− (1.10)]:

�2∂α∂µϵν = �2

d
[gµν∂α + gνα∂µ − gαµ∂ν ](∂ · ϵ)

∂α∂µϵν =
1

d
[gµν∂α + gνα∂µ − gαµ∂ν ](∂ · ϵ) (1.11)

Referring to eqn 1.7.11 of “Ideas and Methods of Supersymmetry and Supergravity” by Sergio M. Kuzenko,
we find that the 3rd order derivation of ϵµ(x) vanishes. Therefore, the most general conformal transformation
is of the type:

x′µ = xµ + aµ + bµνx
ν + cµναx

νxα︸ ︷︷ ︸
ϵµ

Where, aµ, bµν and cµνα are parameters relevant to their transformation. The goal here is simple:

• First find the relevant transformations

• Then based on the transformation rule, find the generators.

For ϵµ = aµ:

x′µ = xµ + aµ

= xµ + δµν a
ν

= xµ + (∂νx
µ)aν

= [1 + iaν(−i∂ν)]xµ

Thus, the generator of translation is Pµ − i∂µ2. For ϵµ = bµαx
α, we refer to (1.3)

∂µϵν(x) + ∂νϵµ(x) =
2

d
(∂ · ϵ)gµν

∂µ(bναx
α) + ∂ν(bµαx

α) =
2

d
(∂µbµαx

α)gµν

bναδ
α
µ + bµαδ

α
ν =

2

d
(bµαg

αµ)gµν

bνµ + bµν =
2

d
bααgµν

bνµ + bµν
2

=
1

d
bααgµν

now,

bµν =
bµν − bνµ

2
+
bµν + bνµ

2
2if we use [1− aν(∂ν)]xµ as the definition, then Pµ = i∂µ would be the generator



10 CHAPTER 1. CONFORMAL SYMMETRY

=Mµν + λgµν

If bµν = λgµν(Mµν = 0)

x′µ = xµ + bµνx
ν

= xµ + λgµα gανx
ν︸ ︷︷ ︸

xα

= xµ + λxµ

= xµ + λxνδµν

= xµ + λxν(∂νx
µ)

= xµ + iλxν(−i∂νxµ)
= (1 + iλ(−ixν∂ν))xµ

Thus, the generator of dilatation is D = −ixµ∂µ. For bµν =Mµν(λ = 0).

x′µ = xµ +Mµ
νx

ν

= xµ +Mα
νδ

µ
αx

ν

= xµ +Mα
ν(∂αx

µ)xν

= xµ +Mαν(∂
αxµ)xν

= xµ +
Mαν −Mνα

2
(∂αxµ)xν

= xµ +
1

2
Mαν(∂

αxµ)xν − 1

2
Mνα(∂

αxµ)xν

relabeling ν ↔ α

= xµ +
1

2
Mαν(∂

αxµ)xν − 1

2
Mαν(∂

νxµ)xα

= xµ +
1

2
Mαν(x

ν∂α − xα∂ν)xµ

= xµ +
i

2
Mαν {−i(xν∂α − xα∂ν)}xµ

= xµ +
i

2
Mαν{i(xα∂ν − xν∂α)︸ ︷︷ ︸

Lαν

}xµ

Thus, the generator of rotation is Lµν = i(xµ∂ν − xν∂µ). Now, the last part ϵµ = cµναx
νxα = cµανx

νxα, we
refer to (1.11):

∂α∂µϵν =
1

d
[gµν∂α + gνα∂µ − gαµ∂ν ](∂ · ϵ)

∂α∂µ(cνσβx
σxβ) =

1

d
[gµν∂α + gνα∂µ − gαµ∂ν ]∂µ(cµσβxσxβ)

cνσβ∂α(δ
σ
µx

β + xσδβµ) =
1

d
[gµν∂α + gνα∂µ − gαµ∂ν ]cµσβ(gσµxβ + xσgβµ)

cνσβ(δ
σ
µδ

β
α + δσαδ

β
µ) =

1

d
[gµν∂α + gνα∂µ − gαµ∂ν ](cσσβxβ + cβσβx

σ)

2cνµα =
2

d
[gµν∂α + gνα∂µ − gαµ∂ν ]cσσβxβ

cνµα =
1

d
cσσβ︸ ︷︷ ︸
bβ

[gµνδ
β
α + gναδ

β
µ − gαµδβν ]

= gνµbα + gναbµ − gµαbν
Therefore,

ϵµ = cµαβx
αβ

= (gµαbβ + gµβbα − gαβbµ)xαxβ
= xµ(b · x) + xµ(b · x)− bµ(x · x)
= 2xµ(b · x)− x2bµ

Hence, the Special Conformal Transformation looks like:

x′µ = xµ + 2xµ(b · x)− x2bµ
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= xµ + 2(b · x)xνδµν − x2bνδµν
= xµ + 2(b · x)xν∂νxµ − x2bν∂νxµ

= [1 + 2(b · x)xν∂ν − x2bν∂ν ]xµ

= [1 + {2bαxαxν∂ν − x2bα∂α}]xµ

= [1 + ibα{−i(2xαxν∂ν − x2∂α)︸ ︷︷ ︸
Kα

}]xµ

Hence, the generator for Special Conformal Transformations (SCT) takes the form Kµ = −i(2xµx · ∂ − x2∂µ).
We will now list all the infinitesimal transformations and their generators we found in this section.

1. Translation

x′µ = xµ + aµ Pµ = −i∂µ (1.12)

2. Rotation

x′µ = xµ +Mµ
νx

ν Lµν = i(xµ∂ν − xν∂µ) (1.13)

3. Dilatation

x′µ = (1 + λ)xµ D = −ixµ∂µ (1.14)

4. Special Conformal Transformation

x′µ = xµ + 2xµ(b · x)− x2bµ Kµ = −i(2xµx · ∂ − x2∂µ) (1.15)

In the above listed transfomations, the parameters aµ,Mµ
ν , λ and bµ are all infinitesimal.

1.3 Finite Conformal Transformation

In the previous section, we considered the infinitesimal conformal transformation, however in this section we
will consider the finite conformal transformation.

1. Translation

x′µ = xµ + aµ = eia
νPνxµ

finite vector

2. Dilatation

x′µ =

(
1 +

λ

N

)
xµ

In order to achieve the finite dilatation, we use the infinitesimal transformation recursively by dividing
the finite λ into infinitely many λ/N pieces and then transforming

x′µ =

(
1 +

λ′′

N

)(
1 +

λ′

N

)(
1 +

λ

N

)
xµ︸ ︷︷ ︸

x′′µ

= lim
N→∞

(
1 +

λ

N

)N

xµ

= eλxµ = eiλDxµ

3. Rotation

x′µ =

[
1 +

i

2
ωαβL

αβ

]µ
ν

xν

=
[
e

i
2ωαβL

αβ
]µ

ν
xν = Λµ

νx
ν



12 CHAPTER 1. CONFORMAL SYMMETRY

4. The special conformal transformation

x′µ = xµ + 2xµ(b · x)− x2bµ

let bµ = t eµ

infinitesimal parameter, i.e. t is small.

x′µ(t) ≡ xµ(t) = xµ + 2t(e · x)xµ − x2teµ

To find the finite form of the transformation we have to recursively apply the above equation multiple
times (Lie Algebra sence). The usual way is to integrate the infinitesimal form. The other way, and since
we know that the transformations satisfy the conformal Killing equation, is to find the integral curve
of the corresponding conformal Killing vector field as they are equivalent (Differential Geometry sense).
Consider the t−derivative of the above3.

dxµ(t)

dt
= 2(e · x)xµ − x2eµ (1.16)

defining yµ(t) = xµ(t)
x2(t)

ẏµ(t) =
x2ẋµ − 2(ẋ · x)xµ

(x2)2

quotient rule

=
x2[2(e · x)xµ − x2eµ]− 2[2(e · x)xν − x2eν ]xνxµ

x4

=
x2[2(e · x)xµ − x2eµ]− 2[2(e · x)x2 − x2(e · x)]xµ

x4

=
x2[�����2(e · x)xµ − x2eµ]−������

2(e · x)x2xµ
x4

ẏµ(t) = −eµ

Solving the above differential equation

yµ(t) = yµ(0)− teµ
xµ(t)

x2(t)
=
xµ(0)

x2(0)
− teµ

going back to the old notation x′µ ≡ xµ(t)

x′µ

x′2
=
xµ

x2
− teµ

=
xµ

x2
− bµ (1.17)

Squaring both sides (
x′µ

x′2

)2

≡ x′µ

x′2
x′µ
x′2

=

(
xµ

x2
− bµ

)2

x′2

x′4
=

(
xµ

x2

)2

+ b2 − 2(x · b)
x2

1

x′2
=

1 + b2x2 − 2(x · b)
x2

x′2 =
x2

1− 2(x · b) + b2x2
(1.18)

referring to (1.17)

x′µ = x′2
[
xµ

x2
− bµ

]
3when we consider the differential equation, we are no longer thinking of it as transformation but rather flow along a trajectory

parameterized by t. This part was taken from pg 16 of “Four point function in momentum spaces and topological terms in gravity”
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and substituting (1.18)

x′µ =
x2

1− 2(x · b) + b2x2

[
xµ

x2
− bµ

]
=

xµ − bµx2
1− 2(x · b) + b2x2

Above procedure also suggests that, finite SCT could be described as a sequence of inversion→translation→inversion.
Where inversion is defined as:

I(xµ) =
xµ

x2

First we note that the inversion is a global conformal transformation and since it is undefined at origin, it
does not have an infinitesimal part i.e. we can not expect inversion to be obtained by exponentiating an
element from the conformal Lie algebra. It is not the connected element of conformal group and in embedding
space formalism, inversion is related to parity. Another interesting point to note is that there is no parameter
associated with the transformation here such as λ for dilatation or bµ for SCT. Lastly, it is also closely related
to the stereographic projection. To show this let us study the stereographic projection of sphere onto a plane.
Consider x ∈ Rn, and define stereographic projection from the north pole of the unit sphere Sn ⊂ Rn+1 as:

Xi =
2xi

1 + |x|2 , Xn+1 =
|x|2 − 1

1 + |x|2

where xi are coordinates on the projected plane and Xi are the coordiantes on the sphere in embedding space.
Now project this point on the sphere back to Rn via stereographic projection from the south pole:

x′i =
Xi

1 +Xn+1

Substituting:

x′i =
2xi

1+|x|2

1 + |x|2−1
1+|x|2

=
2xi

(1 + |x|2) + (|x|2 − 1)
=

2xi

2|x|2 =
xi

|x|2

Hence, the composition gives:

xi 7→ xi

|x|2
which is the inversion in the unit sphere. Even though this inversion does not have a killing vector associated
with it, but it is reasonable to look for the killing vector associated with stereographic projection. In general,
we note that these two transformation would have the following form:

x′µ = Ω(x)xµ

If ∂µ∂ν(
1
Ω ) ∝ gµν . The killing vector associated with it will have the form:

KA
µ =

1

Ω2

∂x′A

∂xµ

Coming back to special conformal transformation which was the topic at hand, we now look at how they scale
the metric tensor.

∂x′µ

∂xν
=

{
δµν − 2bµxν

Λ
− (xµ − bµx2)(−2bν + 2b2xν)

Λ2

}

gαβ(x) =
∂x′µ

∂xα
∂x′ν

∂xβ
g′µν(x

′)

∣∣∣∣
x′=x′(x)

=

{
δµα − 2bµxα

Λ
− (xµ − bµx2)(−2bα + 2b2xα)

Λ2

}
×
{
δνβ − 2bνxβ

Λ
− (xν − bνx2)(−2bβ + 2b2xβ)

Λ2

}
g′µν(x

′)

=

{
δµα − 2bµxα

Λ
− (xµ − bµx2)(−2bα + 2b2x′α)

Λ2

}
×
{
g′µβ − 2bµxβ

Λ
− (xµ − bµx2)(−2bβ + 2b2xβ)

Λ2

}
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=
g′αβ − 2bβxα − 2bαxβ + 4b2xαxβ

Λ2
− (xβ − bβx2)(−2bα + 2b2xα)

Λ3

+
(2(b · x)xβ − 2b2xβx

2)(−2bα + 2b2xα)

Λ3

− (xα − 2bαx
2)(−2bα + 2b2xβ)

Λ3

+
(2(b · x)xα − 2b2x2xα)(−2bβ + 2b2xβ)

Λ3

+
(xµ − bµx2)(xµ − bµx2)(−2bα + 2b2xα)(−2bβ + 2b2xβ)

Λ4

=
g′αβ
Λ2

+
(−2bβxα − 2αxβ + 4b2xαxβ)(1− 2b · x+ b2x2)

Λ3

+
1

Λ3

{
2bαxµ − 2bαbβx

2 − 2b2xαxβ + 2b2x2xαbβ

−4(b · x)bαxβ + 4b2x2bαxβ + 4b2(b · x)xαxβ − 4bµx2xαxβ
}
+ (α↔ β)

+

{
x2 − 2(b · x)x2 + b2x4

}{
4bαbβ − 4b2bβxα − 4b2bαxβ + 4b4xαxβ

}
Λ4

=
g′αβ
Λ2

+
1

Λ3

×
(
−���2bβxα −���2bαxβ +����

4b2xαxβ +������
4(b · x)bαxβ −(((((((

8b2(b · x)xαxβ
−�����2b2x2bβxα −�����2b2x2bαxβ + 4bµx2xαxβ +���2bαxβ +���2bβxα

−4bαbβx2 −����
4b2xαxβ +�����2b2x2xαbβ +�����

2b2x2xβxα −����4bxbαxβ

−����4bxbβxα + 4b2x2bαxβ + 4b2x2bβxα +�����8b2b2xαxβ − 8b4x2xαxβ
)

+ x2
Λ

Λ4

{
4bαbβ − 4b2bβxα − 4b2bαxβ + 4b4xαxβ

}
=
g′αβ
Λ2

+
1

Λ3

{
−4bαbβx2 + 4b2x2bαxβ + 4b2x2bβxα − 4b4x2xαxβ

}
+ x2

1

Λ3

{
4bαbβ − 4b2bβxα − 4b2bαxβ + 4b4xαxβ

}
g′αβ(x

′) = Λ2gαβ(x)

Jacobian of the Transformation

The following part is taken from “Conformal Field Theory Primer in D ≥ 3” by Andrew Evans, pg 36:

Translation:

∣∣∣∣∂xµ∂x̃ν

∣∣∣∣ = 1

Rotation:

∣∣∣∣∂xµ∂x̃ν

∣∣∣∣ = 1

Dilataion:

∣∣∣∣∂xµ∂x̃ν

∣∣∣∣ = λ−d

Inversion:

∣∣∣∣∂xµ∂x̃ν

∣∣∣∣ = ( 1

x̃2

)d

Since the rest are easier to show, we will only focus on showing the last part:

∂xµ

∂x̃ν
=

1

x̃2

[
δµν − 2

x̃µx̃ν
x̃2

]
det

(
∂xµ

∂x̃ν

)
=

1

d!
ϵµ1µ2µ2...µd

ϵν1ν2ν2...νd
∂xµ1

∂x̃ν1

∂xµ2

∂x̃ν2
. . .

∂xµd

∂x̃νd

=

(
1

x̃2

)d
1

d!
ϵµ1µ2µ2...µd

ϵν1ν2ν2...νd

[
δµ1
ν1
− 2

x̃µ1 x̃ν1

x̃2

] [
δµ2
ν2
− 2

x̃µ2 x̃ν2

x̃2

]
. . .

[
δµd
νd
− 2

x̃µd x̃νd

x̃2

]
=

(
1

x̃2

)d
1

d!
ϵµ1µ2µ2...µd

ϵν1ν2ν2...νd

d∏
i=1

δµi
νi
− 2

d∑
j=1

1

d!
ϵµ1µ2µ2...µd

ϵν1ν2ν2...νd
x̃µj x̃νj

x̃2

d∏
i=1
i ̸=j

δµi
νi

+ 0
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Now we use the identity

ϵi1...ik ik+1...inϵ
i1...ik jk+1...jn = δ

i1...ik jk+1...jn
i1...ik ik+1...in

= k! δ
jk+1...jn
ik+1...in

which in our case becomes

ϵµ1µ2µ2...µd
ϵν1ν2ν2...νd

d∏
i=1
i ̸=j

δµi
νi

= (d− 1)!δµj
νj

Hence

det

(
∂xµ

∂x̃ν

)
=

(
1

x̃2

)d
(
d!− 2

∑d
j=1(d− 1)!

d!

)

=

(
1

x̃2

)d(
1− 2d(d− 1)!

d!

)
= −

(
1

x̃2

)d

How distances transform

Under translation

x′µ = xµ + aµ

So,

x′µa − x′µb = xµa + aµ − xµb − aµ
= xµa − xµb

Thus, the distances are invariant under translation:

|x′a − x′b| = |xµa − xµb |

Under dilatation

x′µ = (1 + λ)xµ

So,

x′µa − x′µb = (1 + λ)xµa − (1 + λ)xµb
= (1 + λ)(xµa − xµb )

We find that the distances between two point scales under dilatation, therefore the natural quantity which is
invariant under both translation and dilatation is∣∣x′µa − x′µb ∣∣∣∣x′µc − x′µd ∣∣ = ���1 + λ

���1 + λ

|xµa − xµb |
|xµc − xµd |

=
|xµa − xµb |
|xµc − xµd |

Under special conformal transformation

x′µ =
xµ − bµx2

1− 2(x · b) + b2x2

=
xµ − bµx2
Λ2(x)

So,

x′µa =
xµa − bµx2a
Λ2(xa)

x′µb =
xµb − bµx2b
Λ2(xb)
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and,

x′µa − x′µb =
xµa − bµx2a
Λ2(xa)

− xµb − bµx2b
Λ2(xb)

squaring both sides

(x′µa − x′µb )2 =

(
xµa − bµx2a
Λ2(xa)

− xµb − bµx2b
Λ2(xb)

)2

=
x2a + b2(x2a)

2 − 2x2a(xa · b)
Λ4(xa)

+
x2b + b2(x2b)

2 − 2x2b(xb · b)
Λ4(xb)

− 2

Λ2(xa)Λ2(xb)

[
xa · xb − x2b(xa · b)− x2a(b · xb) + b2x2ax

2
b

]

= x2a

[
1− 2(xa · b)

Λ4(xa)
+

1−Λ2(xb)︷ ︸︸ ︷
2(b · xb)− b2x2b
Λ2(xa)Λ2(xb)

]
+ x2b

[
1− 2(xb · b)

Λ4(xb)
+

1−Λ2(xa)︷ ︸︸ ︷
2(b · xa)− b2x2a
Λ2(xa)Λ2(xb)

]

+
b2(x2a)

2

Λ4(xa)
+
b2(x2b)

2

Λ4(xb)
− 2xa · xb

Λ2(xa)Λ2(xb)

= x2a

[
1− 2(xa · b)− Λ2(xa)

Λ4(xa)
+

1

Λ2(xa)Λ2(xb)

]
+ x2b

[
1− 2(xb · b)− Λ2(xb)

Λ4(xb)

+
1

Λ2(xb)Λ2(xb)

]
+
b2(x2a)

2

Λ4(xa)
+
b2(x2b)

2

Λ4(xb)
− 2xa · xb

Λ2(xa)Λ2(xb)

= x2a

[
−b2x2a
Λ4(xa)

+
1

Λ2(xa)Λ2(xb)

]
+ x2b

[
−b2x2b
Λ4(xb)

+
1

Λ2(xb)Λ2(xb)

]

+
b2(x2a)

2

Λ4(xa)
+
b2(x2b)

2

Λ4(xb)
− 2xa · xb

Λ2(xa)Λ2(xb)

=
(xa − xb)2

Λ2(xa)Λ2(xb)

Thus, we find that the ratio of distances are not invariant under SCT.∣∣x′µa − x′µb ∣∣
|xa − xb|

=
1

Λ(xa)Λ(xb)

where Λ(xa) =
√
1− 2(xa · b) + b2x2a We can however, construct another quantity which is invariant under

SCT.

|x′a − x′b|
|x′b − x′d|

|x′d − x′c|
|x′c − x′a|

=

|xa−xb|
Λ(xa)Λ(xb)

|xb−xd|
Λ(xb)Λ(xd)

|xd−xc|
Λ(xd)Λ(xc)

|xc−xa|
Λ(xc)Λ(xa)

=
|xa − xb|
|xb − xd|

|xd − xc|
|xc − xa|

Such expressions are called, anharmonic ratios or cross-ratios.

1.4 Lie Algebra of Generators

[Pµ, Pν ] = [−i∂µ,−i∂ν ]
= −[∂µ, ∂ν ] = 0

Some useful identities

[xα, ∂β ]f = xα∂βf − ∂β(xαf)︸ ︷︷ ︸
(∂βxα)f+xα∂βf

= xα∂βf − xα∂βf − (∂βxα)f
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= −(∂βxα)f

[xα, ∂β ] = −∂βxα = −g
βα
∂µxα

= g
βα

(1.19)

next is,

[x2, ∂β ] = [xαxα, ∂β ]

= xα[xα, ∂β ] + [xα, ∂β ]xα

= −xαg
βα
− δαβxα

= −xβ − xβ
= −2xβ (1.20)

and the last one is,

[xµx
ν , ∂β ] = xµ[x

ν , ∂β ] + [xµ, ∂β ]x
ν

= −xνδνβ − xνgβα
(1.21)

We will now consider, the lie algebra of different operators one by one.

[Pµ, D] = [−i∂µ,−ixα∂α]
= −[∂µ, xα∂α]
= −xα[∂µ, ∂α]− [∂µ, x

α]∂α

= −δαµ∂α = −∂µ = −i(−i∂µ)
= −iPµ

[Pµ, Lαβ ] = [−i∂µ,−i(xα∂β − xβ∂α)]
= −[∂µ, xα∂β − xβ∂α]
= −[∂µ, xα]∂β + [∂µ, xβ ]∂α

= gαµ∂β − gβµ
∂α

= i(gαµPβ − gβµ
Pα)

[Pµ,Kν ] = [−i∂µ,−i(2xµxα∂α − x2∂ν)]
= −[∂µ, 2xνxα∂α − x2∂ν ]
= −2xνxα[∂µ, ∂α]− 2[∂µ, xνx

α]∂α + x2[∂µ, ∂ν ] + [∂µ, x
2]∂ν

= −2[∂µ, xνxα]∂α + [∂µ, x
2]∂ν

= −2(gµνxα + δαµxν)∂α + 2xµ∂ν

= −2gµνxα∂α − 2(xν∂µ − xµ∂ν)
= −2igµνD − 2iLµν

= −2i(gµνD − Lµν)

[D,Kµ] = −[xα∂α, 2xµxα∂α − x2∂µ]
= −2[xα∂α, xµxβ∂β ] + [xα∂α, x

2∂µ]

= −2
{
xα[∂α, xµx

β ]∂β + xµx
β [xα, ∂β ]∂α

}
+ xα[∂α, x

2]∂µ + x2[xα, ∂µ]∂α

= −2
{
xα
(
gαµx

β + δβαxµ
)
∂β + xµx

β(−δαβ )∂α
}

+ 2x2∂µ −�����xαx2∂α∂µ +�����x2xα∂α∂µ − x2∂µ
= −����

2xµx
β∂β − 2xβxµ∂β +����

2xµx
β∂β + x2∂µ

= −(2xβxµ∂β − x2∂µ)
= −iKµ
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[Kµ, Lαβ ] = [−i(2xµxν∂ν − x2∂µ), i(xα∂β − xβ∂α)]
= [2xµx

ν∂ν − x2∂µ, xα∂β − xβ∂α]
= 2[xµx

ν∂ν , xα∂β ]− [x2∂µ, xα∂β ] + 2[xµx
ν∂ν , xβ∂α]− [x2∂µ, xβ∂α]︸ ︷︷ ︸

α↔β

= 2 {xµxν [∂ν , xα]∂β + xα[xµx
ν , ∂β ]∂ν} − x2[∂µ, xα]∂β − xα[x2, ∂β ]∂µ − (α↔ β)

=(((((((
2xµx

ν(gνα)∂β − 2xα
(
gµβx

ν +���δνβxµ
)
∂ν − x2gµα∂β + 2xαxβ∂µ − (α↔ β)

= −2xαgµβxν∂ν − x2gµα∂β +�����2xαxβ∂µ + 2xβgµαx
ν∂ν + x2gµβ∂α −�����2xβxα∂µ

= −2xαgµβxν∂ν − x2gµα∂β + 2xβgµαx
ν∂ν + x2gµβ∂α

= −gµβ(2xαxν∂ν − x2∂α) + gµα(2xβx
ν∂ν − x2∂β)

= igµαKβ − igµβKα = i(gµαKβ − gµβKα)

[Kµ,Kν ] = −[2xµxα∂α − x2∂µ, 2xνxβ∂β − x2∂ν ]
= −4[xµxα∂α, xνxβ∂β ] + 2[xµx

α∂α, x
2∂ν ] + 2[x2∂µ, xνx

β∂β ]− [x2∂µ, x
2∂ν ]

= −4xνxβ [xµxα, ∂β ] ∂α − 4xµx
α
[
∂α, xνx

β
]
∂β + 2xµx

α
[
∂α, x

2
]
∂ν + 2x2 [xµx

α, ∂ν ] ∂α

+ 2x2
[
∂µ, xνx

β
]
∂β + 2xνx

β
[
x2, ∂β

]
∂µ − x2[∂µ, x2]∂ν − x2[x2, ∂ν ]∂µ

=
(((((((((((
4xνx

β(gµβx
α + δαβxµ)∂α −(((((((((((

4xµx
α(gανx

β + δβαxν)∂β + 4xµx
2∂ν − 2x2(���gµνx

α + δαν xµ)∂α

+ 2x2(�
��gµνx

β + δβµxν)∂β − 4xνx
2∂µ − 2x2xµ∂ν + 2x2xν∂µ

=(((((((((
4xµx

2∂ν − 2xµx
2∂ν +(((((((((

2xνx
2∂µ − 4xνx

2∂µ −����
2x2xµ∂ν +����

2x2xν∂µ

= 0

Next, we will see that Conformal Algebra in d dimensions is isomorphic to the Lie algebra of the Lorentz group
in d + 2 dimensions, any conformal covariant correlator in d dimensions should be obtainable from Lorentz
covariant expressions in d+2 dimensions via some kind of dimensional reduction procedure. This is essentially
the idea behind Embedding Formalism. We define the following set of new operators:

Jµν = Lµν

J0,µ =
1

2
(Pµ +Kµ)

J−1,µ =
1

2
(Pµ −Kµ)

J−1,0 = D

with the property that
Jab = −Jba

where
a, b ∈ {−1, 0, 1, · · · , d }

d is dimension of spacetime

These new generators, obey SO(d+ 1, 1) lie algebra:

[Jab, Jcd] = i (ηadJbc − ηacJbd − ηbdJac + ηbcJad) (1.22)

In this section, we will explicitly assume the form of flat metric as being euclidean, and given as:

gµν = ηµν = (1, 1, · · · , 1︸ ︷︷ ︸
d

)

Our metric in (1.22) would be given as:

ηab = ( − 1 , 1 , 1, · · · , 1︸ ︷︷ ︸
µ,ν

)

η00 = 1

η−1−1 = −1

(1.23)

If our original metric was Minkowski, we would have had:

ηab = (−1, 1,−1, · · · , 1︸ ︷︷ ︸
d

)
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We will now check, if (1.22) holds true:

[Jµν , J0,α] =

[
Lµν ,

1

2
(Pα +Kα)

]
=

1

2
[Lµν , Pα] +

1

2
[Lµν ,Kα]

= −1

2
[Pα, Lµν ]−

1

2
[Kα, Lµν ]

= −1

2
(ηαµPµ − ηανPµ)−

1

2
(ηαµKν − ηανKν)

= −ηαµ
[
1

2
(Pν +Kν)

]
+ ηα,ν

[
1

2
(Pµ +Kµ)

]
= −iηαµJ0,ν + iηανJ0,µ

[J0,µ, J−1,0] =

[
1

2
(Pµ +Kµ), D

]
=

1

2
[Pµ, D] +

1

2
[Kµ, D]

= −1

2
iPµ −

1

2
(−iKµ) =

−i
2
(Pµ −Kµ) = −iJ−1,µ

If we assume that the metric in (1.22) is indeed given by (1.23). Then, the algebra (1.22) holds true. This
shows the isomorphism between the conformal group of d−dimensional Euclidean space and the SO(d + 1, 1)
group of d+ 2 dimensional Minkowski spacetime with 1/2(d+ 1)(d+ 2) parameters.

Conformal Generators on the Field

Finite form of conformal transformation (x′ = Λx)4

Φ′
a(x

′) = U(Λ)Φa(x)U
−1(Λ)

Φ′
a(Λx) =

∑
b

πab(Λ)Φb(x)

= πab(Λ)Φb(Λ
−1x′)

= πab(e
iωgcg )Φb(e

−iωgcgx′) (1.24)

We have dropped the
∑

sign and summation over repeated indices are implied. Infinitesimal form of (1.24):

Φ′
a(x

′) = (1− iωg Tg )abΦb(Λ
−1x′)

generator only acting on field

= (1− iωgTg)ab Φb[(1− iωg cg )x′µ]︸ ︷︷ ︸
Φb(x

′)+{(1−iωgcg)x
′µ−x′µ}∂µΦb(x

′)

generator which only acts on x′µ

= (1− iωgTg)ab[Φb(x
′)− iωgcgx

′µ∂µΦb(x
′)]

Φ′(x′) = Φ(x′)− iωg

[
Tg + cgx

′µ ∂

∂x′µ

]
Φ(x′) +O(ω2

g)

accounts for the change in argument of field

However, we will not use this approach but rather we will consider the transformations at origin and then
translate it to every other point. This approach is based on studying the stabilizer subgroup of the Conformal
Symmetry.5 So, if we study the same at origin:

Φ′(0) = Φ(x′)− iωg

[
Tg + cgx

′µ ∂

∂x′µ

]
Φ(x′)

∣∣∣∣∣
x′=0

= Φ(0)− iωgTgΦ(0)

4tobias osborne’s lecture notes pg 18
5pg 7 of “The Conformal Bootstrap: Theory, Numerical Techniques, and Applications”
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using translation operator

eix
λPλΦ′(0)e−ixαPα = eix

λPλΦ(0)e−ixαPα − eixλPλiωgTgΦ(0)e
−ixαPα

Φ′(x) = Φ(x)− eixλPλiωgTge
−ixσPσeix

βPβΦ(0)e−ixαPα

= Φ(x)− iωg e
ixλPλTge

−ixσPσ︸ ︷︷ ︸
we will find these “translated operators” later

Φ(x)

For translation

Φ′(x+ a) = eia
λPλΦ(x)e−iaαPα

= eia
λ[Pλ, ]Φ(x)

using (1.26)

= ea·∂Φ(x)

For rotation, at x′µ = 0. =⇒ xµ = 0

Φ′
a(0) = πab(Λ)Φb(Λ

−10) = πab(Λ)Φb(0)

Now, assuming the generator of rotation Tg = Lµν acts like6

LµνΦa(0) = SµνΦa(0) (1.25)

at origin. At any other point, it will behave as:

LµνΦa(x) = eix
βPβLµνΦa(0)e

−ixαPα

= eix
βPβLµνe

−ixσPσ︸ ︷︷ ︸
?

eix
λPλΦa(0)e

−ixαPα︸ ︷︷ ︸
Φa(x)

by taking the derivative of second term, we obtain the following commutator

Φa(x) = eix
λPλΦa(0)e

−ixαPα

∂µΦa(x) = (∂µe
ixλPλ)Φa(0)e

−ixαPα + eix
λPλΦa(0)(∂µe

−ixαPα)

= iPµeix
λPλΦa(0)e

−ixαPα + eix
λPλΦa(0)e

−ixαPα(−iPµ)

= iPµΦa(x)− iΦa(x)P
µ

= i[Pµ,Φa(x)] (1.26)

We will now derive the form of eix
βPβLµνe

−ixσPσ7:

eix
βPβLµνe

−ixσPσ = Lµν + [Lµν ,−ixαPα] +
1

2!
[[Lµν ,−ixαPα],−ixαPα] + . . .

= Lµν + ixα [Pα, Lµν ]︸ ︷︷ ︸
i(gαµPν−gανPµ)

+ . . .

= Lµν + i2xα(gαµPν − gανuPµ)

= Lµν − xµPν + xνPµ

= Lµν + i(xµ∂ν − xν∂µ)︸ ︷︷ ︸
we found in section 1.2

we know, at x′ = 0 we have Lµν = Sµν , so for the sake of consistency we get

eix
βPβLµνe

−ixσPσ = Sµν + i(xµ∂ν − xν∂µ)
Spin Operator transforms the argument of field

The exponential map of above can be found in any textbook on QFT which describes rotation or Lorentz
transformation.8 If we ignore Sµν , then we can see how the last part acts on field:

x′µ =

(
δµν +

i

2
ωαβL

αβ

)
xµ

6pg 10, paragraph 2 of “Conformal field theory in momentum space and anomaly actions in gravity The analysis of three- and
four-point functions”

7using BCH lemma eABe−A = e[A, ]B
8check eqn 1.141 and 1.150 of “QFT in curved spacetime” by Leonard Parker
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= xµ +
i

2
ωαβi

(
xα∂β − xβ∂α

)
xν

Φ′(x) = Φ(x)− i

2
ωαβL

αβΦ(x)

= Φ(x)− i

2
ωαβi(x

α∂β − xβ∂α)Φ(x)

= Φ(x) +
1

2
ωαβ(x

αgβσ∂σ − xβgασ∂σ)Φ(x)

= Φ(x) +
1

2
ωαβ(x

α∂β − xβ∂α)xσ∂σΦ(x)

= Φ(x)− i

2
ωαβL

αβx · ∂Φ(x)

≈ Φ

(
xµ − i

2
ωαβL

αβxν
)

Φ′(x′) = Φ(x)

For dilatation, at x′µ = 0, x′µ = (1 + λ)xµ = 0 =⇒ xµ = 0. We have ωg = λ and Tg = D:

DΦa(0) = ∆̃Φa(0) (1.27)

corresponding commutator (by operating it on eigenstate of dilatation)

D |∆⟩ = [D,Φ∆(0)] |0⟩+Φ∆(0)D |0⟩
∆̃ |∆⟩ = [D,Φ∆(0)] |0⟩+ 0

∆̃Φ∆(0) |0⟩ = [D,Φ∆(0)] |0⟩

Applying the same procedure, we consider:

eix
βPβDe−ixσPσ = D + [D,−ixβPβ ] +

1

2!
[[D,−ixβPβ ],−ixβPβ ] + . . .

= D − ixα(iPα)

= D + xαPα (1.28)

= D − ixα∂α
for the sake of consistency at x′ = 0

= ∆̃− ixα∂α
Now, we consider

DΦa(x) = (∆̃− ixα∂α)Φa(x)

redefining ∆̃ ≡ −i∆, we get
DΦa(x) = −i(∆ + xα∂α)Φa(x)

Similarly,9

[D,Φa(x)] = Deix
βPβΦa(0)e

−ixσPσ − eixβPβΦa(0)e
−ixσPσD

= eix
λPλ eix

αPαDe−ixβPβ︸ ︷︷ ︸
=D+xαPα

Φa(0)e
−ixσPσ − eixβPβΦa(0) e

−ixσPσDe−ixαPα︸ ︷︷ ︸
=D+xαPα

e−ixλPλ

= eix
βPβ [D + xαPα,Φa(0)]e

−ixσPσ

= eix
βPβ [D,Φa(0)]︸ ︷︷ ︸

∆̃Φa(0)

e−ixσPσ + eix
βPβ [xαPα,Φa(0)]︸ ︷︷ ︸

=xα[Pα,Φa(0)]

e−ixσPσ

= ∆̃Φa(x)− ix · ∂Φa(x)

= −i(∆ + x · ∂)Φa(x)

Finite Dilatation10, we consider

x′ = eλx = eiλDx =

(
1 + i

λ

N
D

)
. . .

(
1 + i

λ

N
D

)
x

Dxµ = −ix · ∂xµ

9from pg 31 of 2309.10107, and x is not an operator here but a number
10look up Lectures Notes For An Introduction to Conformal Field Theory A Course Given By Dr. Tobias Osborne, pg 19
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then at origin, the field transforms (active transformation) as:

Φ′
a(0) =

(
1 + i

λ

N
D

)
. . .

(
1 + i

λ

N
D

)
Φa(0)

=

(
1 + i

λ

N
∆̃a

)
. . .

(
1 + i

λ

N
∆̃a

)
Φa(0) (using DΦ(0) = ∆̃Φ)

= eiλ∆̃aΦa(0)

= e−λ∆aΦa(0)

In passive transformation

Φ′
a(0) =

(
1− i λ

N
∆̃a

)
. . .

(
1− i λ

N
∆̃a

)
Φa(0)

= e−iλ∆̃aΦa(0)

= eλ∆Φa(0)

For arbitrary point (ignoring the change in argument of field and thus generator cg):

Φ′
a(x

′) = πab(e
iλD)Φb(x)

= [eiλ∆̃]abΦb(x)

Φ′
a(e

λx) = [e−λ∆]abΦb(x) = e−λ∆Φa(x)

For SCT, x′µ = 0 =⇒ xµ = 0. Hence, we will consider the same equations, but in this context:

KµΦa(0) = κµΦa(0)

Again, applying the same procedure,

eix
βPβKµe

−ixσPσ = Kµ + [Kµ,−ixβPβ ] +
1

2!
[[Kµ,−ixβPβ ],−ixβPβ ] + . . .

= Kµ − ixβ [Kµ, Pβ ] +
1

2
[−ixβ [Kµ, Pβ ],−ixβPβ ] + . . .

= Kµ + 2xβ(gµβD − Lµβ) +
1

2
[2xβ(gµβD − Lµβ),−ixαPα]

= Kµ + 2xµD − 2xβLµβ − ixµxα[D,Pα] + ixβxα [Lµβ , Pα]︸ ︷︷ ︸
−i(gαµPβ−gαβPµ)

= Kµ + 2xµD − 2xβLµβ + xµx
αPα + xµx

βPβ − xαxαPµ

= Kµ + 2xµD − 2xβLµβ + 2xµx
αPα − xαxαPµ

From the generator of dilatation and SCT, we have11

[D,Kµ] = −iKµ at x′µ = 0 =⇒ [∆̃, κµ] = −iκµ

and

[D,Lµν ] = 0 at x′µ = 0 =⇒ [∆̃, Sµν ] = 0

For primary fields:

KµΦa(0) = 0

Since, for primary field ∆̃ commutes with all other operators which belong to the stability subgroup. By Schur’s
lemma ∆̃ ∝ I, where I is an identity operator. The SCT and momentum generator acts as ladder operator for
Dilatation.

[D, [Pµ,Φ(0)]] = [Pµ, [D,Φ(0)]] + [[D,Pµ],Φ(0)] = −i(∆ + 1)[Pµ,Φ(0)]

[D, [Kµ,Φ(0)]] = [Kµ, [D,Φ(0)]] + [[D,Kµ],Φ(0)] = −i(∆− 1)[Kµ,Φ(0)]

11same notes, look at eqn 65 to 70 (pg 18-19), all these commutators are for Tg
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Conformal Invariance of Scalar Field

Start from the free, massless scalar action in d dimensions:

S[ϕ] =
1

2

∫
ddx (∂µϕ)(∂

µϕ).

Under a scale (dilatation) transformation

x 7→ x′ = λx, λ > 0,

a primary scalar field transforms as
ϕ(x) 7→ ϕ′(x′) = λ−∆ϕ(x),

where ∆ is the scaling dimension to be determined. The measure scales as12

ddx 7→ ddx′ = λdddx,

and the derivative transforms as

∂µϕ(x) 7→ ∂′µϕ
′(x′) =

∂xν

∂x′µ
∂ν
(
λ−∆ϕ(x)

)
= λ−1λ−∆∂µϕ(x) = λ−(∆+1)∂µϕ(x).

Hence the kinetic density transforms as

(∂ϕ)2 7→ λ−2(∆+1)(∂ϕ)2,

and the full integrand scales by
ddx (∂ϕ)2 7→ λd−2(∆+1) ddx (∂ϕ)2.

Classical scale invariance of the action requires the exponent of λ to vanish:

d− 2(∆ + 1) = 0.

Solving for ∆ gives

∆ =
d

2
− 1. (1.29)

Finite Conformal Transformation of Fields

We begin by noting that translation and rotation do not introduce any new thing that we hadn’t encountered
in QFT, it is only the dilatation which does. Upon exponentiating the infinitesimal dilatation:

Φ′(x′) = e−iωg[Tg+cgx
′µ ∂

∂x′µ ]Φ(x′)

= e−iωgTge−iωgcgx
′· ∂

∂x′ Φ(x′)

= e−iωgTgΦ(e−iωgcgx′)

This section is taken from “advanced mathematical methods - conformal field theory” by David Duffins.13

Φ′
a(x

′) = U(Λ)Φa(x
′)U−1(Λ) = e−iωgTgΦae

iωgTg

= e−iωg [Tg, ]Φa(x
′)

For translation

Φ(x) = eix
λPλΦ(0)e−ixαPα = ex∂Φ(0)

Or,

Φ′(x′) = Φ(x)

= Φ(x′ − a)
= e−a ∂

∂x′ Φ(x′)

12the metric and metric determinant do not change due to Weyl scaling, resulting in measure being transformation dependent
13Active coordinate transformation is given as: Φ(x′) = U(Λ)Φ(x)U−1(Λ) whereas passive transformation is given as Φ(x′) =

U−1(Λ)Φ(x)U(Λ)
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= e−iaPΦ(x′)

For dilatation (x′ = eλx)

Φ′
a(x

′) = e−iλDΦa(x
′)

= e−λ(∆+x′·∂)Φa(x
′)

= e−λ∆ e−λx·∂Φa(x
′)︸ ︷︷ ︸

Φa[e−λx′]

= e−λ∆Φa(x)

The last part could be understood as:

Φa

[(
1− λ

N

)
x

]
= e−

λ
N x·∂Φa(x)

Φa

[(
1− λ

N

)
. . .

(
1− λ

N

)
︸ ︷︷ ︸

N terms

x

]
= e−

λ
N x·∂Φa

[(
1− λ

N

)
. . .

(
1− λ

N

)
︸ ︷︷ ︸

N−1 terms

x

]

Φa(e
−λx) = e−λx·∂Φa(x)

or, alternatively

e−λx·∂Φa(x) =

(
1− λ

N
x · ∂

)N

Φa(x)

=

(
1− λ

N
x · ∂

)
. . .

(
1− λ

N
x · ∂

)
Φa(x)︸ ︷︷ ︸

Φa[(1− λ
N )x]

= Φa

[(
1− λ

N

)N

x

]
= Φa(e

−λx)



Chapter 2

Embedding coordinates for Euclidean
Space

We start in the embedding space Rd+1,1 with coordinates

X−1, X0, X1, X2, . . . , Xd︸ ︷︷ ︸
Xµ

To simplify the discussion, it is convenient to introduce null coordinates, XM = (X+, X−, Xµ), defined as1

X+ = X−1 +X0

X− = X−1 −X0

}
X−1 =

X+ +X−

2
; X0 =

X+ −X−

2

With this choice, the mostly-plus metric of the embedding space becomes

ds2 = −(dX−1)2 + (dX0)2 +

d∑
µ=1

(dXµ)2 =

d∑
µ=1

(dXµ)2 − dX+dX−

This can be written in matrix form as

η
MN

=



0 −1/2 0 0 · · ·
−1/2 0 0 0 · · ·
0 0 1 0 · · ·
...

... 0 1
. . .


The power of the embedding formalism is that the conformal generators in d-dimensional Euclidean space can
be realized as Lorentz generators in d + 2 dimensions. To make this connection explicit, we introduce new
coordinates (ρ, η, xµ) via the transformation

X−1 =
ρ(1− η2 + x⃗2)

2

X0 =
ρ(1 + η2 − x⃗2)

2
Xµ = ρxµ

This parametrization makes manifest an important redundancy: scaling all embedding coordinates by an overall
factor λ corresponds simply to ρ 7→ λρ. Thus, points related by rescalings X ′A = λXA correspond to the same
physical point in the conformal compactification. To proceed, we invert the transformation to express (ρ, η, xµ)
in terms of XA:

1the index with lowest numeric value has the same sign in both X±. If we had considered, Xd+1 rather than X−1 then the
definition would have been something like

X± = X0 ±Xd+1

25
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ρ = X−1 +X0

η =

√
ηMNXMXN

X−1 +X0
← ρη =

√
ηMNXMXN

xµ =
Xµ

X−1 +X0

Next, we compute the change of basis for derivatives. Using the chain rule, one finds

∂

∂X−1
=

∂

∂ρ
− 1 + η2 + x⃗2

2ρη

∂

∂η
− xµ

ρ

∂

∂xµ

∂

∂X0
=

∂

∂ρ
+

1− η2 − x⃗2
2ρη

∂

∂η
− xµ

ρ

∂

∂xµ
∂

∂Xµ
=
xµ
ρη

∂

∂η
+

1

ρ

∂

∂xµ

The Lorentz generators in d+ 2 dimensions are

JMN = XM∂N −XN∂M

By combining them appropriately, we recover the familiar conformal generators in d dimensions.

• Translation

Pµ = J−1,µ + J0,µ = (X−1 +X0)
∂

∂Xµ
−Xµ

(
∂

∂X0
− ∂

∂X−1

)
= ρ

(
xµ
ρη

∂

∂η
+

1

ρ

∂

∂xµ

)
− ρxµ

(
1

ρη

∂

∂η

)
=

∂

∂xµ
=

∂

∂xµ

• Special Conformal Transformation

Kµ = J0,µ − J−1,µ = (X0 −X−1)
∂

∂Xµ
−Xµ

(
∂

∂X0
+

∂

∂X−1

)
= ρ(η2 − x⃗2)

(
xµ
ρη

∂

∂η
+

1

ρ

∂

∂xµ

)
− 2ρxµ

[
∂

∂ρ
−
(
η2 + x⃗2

2ρη

)
− xµ

ρ

∂

∂xµ

]
=
η2 − x⃗2

η
xµ

∂

∂η
+ (η2 − x⃗2) ∂

∂xµ
− 2ρxµ

∂

∂ρ
+ xµ

η2 + x⃗2

η

∂

∂η
+ 2xµ(x · ∂)

= 2xµ(x · ∂)− x⃗2∂µ + η2∂µ − 2ρxµ
∂

∂ρ
+ 2xµη

∂

∂η

• Dilatation

D = J−10 = X−1
∂

∂X0
−X0

∂

∂X−1
= X−1

∂

∂X0
+X0

∂

∂X−1

=
ρ(1− η2 + x⃗2)

2

[
∂

∂ρ
+

1− η2 − x⃗2
2ρη

∂

∂η
− xµ

ρ

∂

∂xµ

]
+
ρ(1 + η2 − x⃗2)

2

[
∂

∂ρ
− 1 + η2 + x⃗2

2ρη

∂

∂η
− xµ

ρ

∂

∂xµ

]
= ρ

∂

∂ρ
− xµ ∂

∂xµ
− η ∂

∂η

If we now restrict to the null cone η = 0 and fix ρ (using the scaling redundancy), the generators simplify to
their standard flat-space form:

Pµ = ∂µ

Kµ = 2xµ(x · ∂)− xνxν∂µ
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D = −xµ∂µ

Note that conformal algebra is satisfied by both ±Pµ and ±Kµ. The null cone corresponds to η = 0 but no
condition imposed on ρ. Thus, there’s a gauge redundancy: different values of ρ acting as scale factor for the
coordinates correspond to the same physical point.

Next important to understand now is how the tensor fields transform under conformal transformation. We
can use the embedding space to deduce their transformation law which is often more illuminating than the
algebra gymnastics.

2.1 Tensor field under conformal transformation

The transformation rule for tensor field under conformal transformation is very complicated, therefore we will
rely on Embedding formalism to find a simpler form. In this approach, physical spacetime coordinates xµ are
understood as projections from a higher-dimensional embedding space with coordinates XA ∈ Rd,2, where the
conformal group SO(d, 2) acts linearly. Tensors in physical space are then obtained by pulling back embedding
space tensors via this projection. Specifically, a tensor in physical space is related to its embedding space
counterpart as follows:

Tµ1···µn
ν1···νm

(x) =
∂xµ1

∂XA1
· · · ∂x

µn

∂XAn

∂XB1

∂xν1
· · · ∂X

Bm

∂xνm
TA1···An

B1···Bm
(X)

The map from embedding to physical space is given by

xµ =
Xµ

X+
≡ Xµ

X0 +X−1

but due to the projective nature of this construction—i.e., physical points correspond to rays in the embedding
space—we are free to rescale X ∼ λX, which is a manifestation of dilatation symmetry. Under this rescaling,
the tensor should satisfy

T (λX) = λ−∆T (X)

which defines its conformal weight ∆. Using this, the projected tensor can be written as

Tµ1···µn
ν1···νm

(x) =

(
1

X+

)∆
∂xµ1

∂XA1
· · · ∂x

µn

∂XAn

∂XB1

∂xν1
· · · ∂X

Bm

∂xνm
TA1···An

B1···Bm

(
X

X+

)
This includes both the Jacobian factors from the change of variables and the prefactor from conformal weight.

If we choose the embedding slice X+ = 1, then the projection simplifies significantly. In this gauge, we
define the following object:

eµA = X+ ∂xµ

∂XA

and the projected tensor becomes

Tµ1···µn
ν1···νm

(x) = eµ1

A1
· · · eµn

An
eB1
ν1
· · · eBm

νm
TA1···An

B1···Bm
(X)

Using the explicit form of the projection xµ = Xµ/X+, we compute

∂xµ

∂XA
=
δµA(X

0 +X−1)−Xµ(δ0A + δ−1
A )

(X0 +X−1)2

and setting X+ = 1, we get
eµA = δµA, e0A = e−1

A = −xµ

However, if we don’t choose the sliceX+ = 1, then the projected tensor carries an additional scaling dependence:

Tµ1···µn
ν1···νm

(x) =

(
1

X+

)∆+n−m

eµ1

A1
· · · eµn

An
eB1
ν1
· · · eBm

νm
TA1···An

B1···Bm
(X)︸ ︷︷ ︸

depends only on physical point

This shows that tensors projected from different embedding space sections—i.e., different choices of X+—differ
by a power of X+. So if two representations x and x̃ correspond to the same physical point but lie on different
sections (i.e., with different values of X+), then the corresponding tensors are related as

T (x̃) =

(
X+

X̃+

)∆+n−m

T (x)
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dx′

dx̃′ = Λdx

dx

Figure 2.1: Upon Lorentz transformation, the points get mapped to different section however by utilizing the
dilatation, we bring it back inside the original Euclidean section.

Next, consider how the tensor transforms under a conformal change of coordinates x 7→ x′ which amounts
to applying the corresponding Lorentz transformation X 7→ X ′ = ΛX in embedding space. Since the Lorentz
transformation will map the tensor T (X) to another tensor T (X ′) living in different section, we will need to
use above expression to map it back inside the original section labeled by X+. The tensor at x̃′ is then:

Tµ1···µn
ν1···νm

(x̃′) =
∂x′µ1

∂X ′A1
· · · ∂x

′µn

∂X ′An

∂X ′B1

∂x′ν1
· · · ∂X

′Bm

∂x′νm
TA1···An

B1···Bm
(X ′)

Now applying the chain rule, we insert identities:

∂x′µ

∂X ′ =
∂x′µ

∂xα
· ∂x

α

∂X ′ ,
∂X ′

∂x′
=
∂X ′

∂xβ
· ∂x

β

∂x′

This yields:

Tµ1µ2···µn
ν1ν2···νm

(x̃′)︸ ︷︷ ︸
tensor field projected on section X

′+

=

(
∂x′µ1

∂xα1
· · · ∂x

′µn

∂xαn

)(
∂xβ1

∂x′ν1
· · · ∂x

βm

∂x′νm

)[
∂xα1

∂XA1
· · · ∂x

αn

∂XAn

∂XB1

∂xβ1
· · · ∂X

Bm

∂xβm

]
TA1A2···An

B1B2···Bm
(X)︸ ︷︷ ︸

tensor field projected on section X+(
X+

X ′+

)∆+n−m

Tµ1µ2···µn
ν1ν2···νm

(x′) =

(
∂x′µ1

∂xα1
· · · ∂x

′µn

∂xαn

)(
∂xβ1

∂x′ν1
· · · ∂x

βm

∂x′νm

)
Tα1···αn

β1···βm
(x)

=

(
∂x′µ1

∂xα1
· · · ∂x

′µn

∂xαn

)(
∂xβ1

∂x′ν1
· · · ∂x

βm

∂x′νm

)(
X

′+

X+

)∆+n−m

Tα1···αn

β1···βm
(x)

The factor (X
′+/X+)∆+n−m arises because x′ and x̃′ are physically the same point, but obtained by projecting

from different embedding sections. To express this ratio in terms of the coordinate Jacobian |∂x′/∂x|, note
that from the projection xµ = Xµ/X+ and x′µ = X ′µ/X

′+, one finds∣∣∣∣∂x′∂x

∣∣∣∣ = ∣∣∣∣∂X∂x · ∂x′∂X

∣∣∣∣ = ∣∣∣∣∂X∂x · ∂x′∂X ′
∂X ′

∂X

∣∣∣∣ = ∣∣∣∣( X+

X ′+

)
∂X ′

∂X

∣∣∣∣ = ∣∣∣∣ X+

X ′+

∣∣∣∣d |Λ|
and therefore, (

X+

X ′+

)∆+n−m

=

∣∣∣∣∂x′∂x

∣∣∣∣∆+n−m
d

Finally, combining everything, the full transformation law for the projected tensor under a conformal coordinate
transformation is:

Tµ1···µn
ν1···νm

(x′) =

∣∣∣∣∂x′∂x

∣∣∣∣−∆+n−m
d

(
∂x′µ1

∂xα1
· · · ∂x

′µn

∂xαn

)(
∂xβ1

∂x′ν1
· · · ∂x

βm

∂x′νm

)
Tα1···αn

β1···βm
(x)

This expression makes it manifest that the projected tensor transforms as a tensor under general coordinate
transformations, but with an additional conformal weight ∆+ n−m that reflects both the homogeneity of the
embedding space tensor and the number of upper and lower indices involved in the projection.
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2.2 Finding Correlators from Embedding Space

Needless to say, it is significantly easier to construct Lorentz covariant expressions than conformally covariant
ones. Therefore, the natural question arises: once we have constructed Lorentz covariant expressions in d + 2
dimensions, how do we descend to d dimensions without breaking covariance?

Since we have already fixed η = 0 in our derivation of the conformal generators, we now focus on the
structure preserved by Lorentz transformations: the null light cone X2 = 0 in embedding space. This cone,
defined in Rd+1,1 as the space of null rays through the origin, is given by:

X2 = −(X0)2 + (X1)2 + · · ·+ (Xd+1)2

= −X+X− +

d∑
µ=1

(Xµ)2 = 0

Although correlators are initially constructed as Lorentz-invariant functions over the full d+ 2-dimensional
ambient space, we now restrict them to the null cone. This constraint effectively reduces the support of such
correlators to a d + 1-dimensional submanifold, since one of the coordinate dependencies—say, X−—can be
eliminated using the condition X2 = 0 (in our case it leads to η = 0).

Next, we reinterpret embedding space as a fiber bundle over the physical d-dimensional spacetime (where
the CFT is defined). Each fiber consists of null lines in the (d + 2)-dimensional space, and each point in the
base space corresponds to an equivalence class of null vectors XA ∼ λXA, for any non-zero λ. This reflects the
earlier observation regarding the arbitrariness of ρ: all such rescalings represent the same physical point in d
dimensions.

This identification has an important consequence: As mentioned earlier, this introduces gauge redundancy
in our description. To eliminate another coordinate, say X+ = ρ, we fix the gauge by selecting a section of the
bundle with specific choice of the slice on the embedding space, typically the Euclidean section, defined by:

X+ = ρ = f(Xµ) ≡ f(xµ)

Although Lorentz transformations may take a null vector outside this section (as they mix time-like and
space-like directions), theu can always be brought back by utilising the scaling equivalence XA ∼ λXA. This
choice anchors us to physical d-dimensional spacetime, completing the descent from d + 2 dimensions while
maintaining conformal covariance inherited from Lorentz invariance in the higher-dimensional space. With
these prescriptions in place we can now identify Xµ with the Euclidean space coordinates xµ by stripping ρ
dependence.

Xµ ≡ xµ

This leads to definition of X− based on null condition as:

X− =

∑d
µ=1(X

µ)2

X+
=
XµXµ

X+
=

x2

f(Xµ)

or, equivalently2

ρ(−η2 + x⃗2) =
ρ2x⃗2

ρ
=⇒ η = 0

The spacetime interval on this section is given as:

ds2 = dx2 − dX+dX−
∣∣∣
X+=f(Xi),X−= x2

X+

This section satisfies two of the following conditions:

• section intersects each of the light rays at some point

• maps each point in d dimensional Euclidean space to a point on the null cone in Embedding space.

We have shown how to get generators of conformal transformation from Lorentz generators by embedding a
null cone in ambient space. Let us now analyze how Lorentz Transformation acts on a generic section on that
null cone. The Lorentz transformation acting as rotation on the point XA in the null-cone will move it to
another point on the null cone outside the the section XB = ΛB

AX
A.

2in our notation xµ = ρx⃗µ
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xA

xC

xB

hypersurface
(Null cone)

light rays

Euclidean section

hypersurface

X0 X+X−

Xµ

Xd+1

X2 = 0 X+ = 1

Figure 2.2: The hypersurface perpendicular to X+ axis cutting at X+ = 1 is shown as a plane and the null
hypersurface is shown as the cone. The intersection of these two hypersurfaces describes the Euclidean Section.
Dilatations are rotation in the X0Xd+1 plane and SCT or momentum generators are rotations in XµXd+1 with
X0Xd+1 plane.

However, suppose via some conformal transformation (dilatation) in d dimensional Euclidean Space, we can
move XB to XC back into the section. In all these steps, the only thing that changes the metric is the rescaling
to get back into the section.

ds2B = dXMdXM

= d(λ(X)XM )d(λ(X)XM )

= [λdXM +XM (∇λ · dX)][λdXM +XM (∇λ · dX)]

= λ2dXMdXM + 2λ dXMXM︸ ︷︷ ︸
=0

(∇λ · dX) +XMXM︸ ︷︷ ︸
=0

(∇λ · dX)2

= λ2dXMdXM = λ2ds2C

where we used, X2 = 0 and XµdXµ = 0 for restricting it to null cone.
Assuming the three conditions we used for simplification applies, the Lorentz Transformation in d + 2-

dimensional spacetime is equivalent to conformal transformation in d−dimensional spacetime iff metric in
d−dimensional space is Euclidean thus, dX+ in ds2 has to vanish. It gives us the condition for defining the
Euclidean section as X+ = ρ = constant and thus, for the sake of simplificity, we take it as 1. Thus, we have
two conditions which we can use to eliminate two extra degree of freedom.

In the embedding space formalism, choosing an Euclidean section corresponds to picking a specific way
to embed the d−dimensional space in the (d + 2)−dimensional space. We define the following map between
d dimensional Euclidean Space with conformal symmetry to null cone in d + 2 dimensional Minkowski space
Rd+1,1

(X+, X−, Xµ) ≡
(
1, x2, xµ

)
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Here, we note that choosing a constant value for X+ would give us a section on the cone on which the induced
metric is Euclidean.

2.3 Tensors in Embedding Space

In this section, we will only concern ourselves with traceless and symmetric fields in Rd and leave the anti-
symmetric tensors for future. Consider a symmetric and traceless tensor3 OM1...MS

defined on the cone X2 = 0
in Rd+1,1. Under the rescaling X → λX, the tensor transforms as

OM1...MS
(λX) = λ−∆OM1...MS

(X)

i.e. it is a homogeneous function of degree ∆. We expect OM1...MS
to get mapped to traceless and symmetric

primary field in Rd. Since, each index go from 0 to d+ 1, in Rd+1,1 we find that, for d+ 2−dimensional fields
other than scalar have 2 more degree of freedom per index than d−dimensional fields. In order to remove the
extra degree of freedom, we consider the transversality condition.

XM1OM1...MS
= 0

We define the physical field to be:

ϕµνλ...(x) =
∂XM1

∂xµ
∂XM2

∂xν
∂XM3

∂xλ
. . . OM1...MS

(X)

∣∣∣∣∣
X=X(x)

Note that, this definition implies a redundancy. Indeed, anything proportional to XM gives zero since

X2 = 0 =⇒ XM
∂XM

∂xµ
= 0

Therefore, OM1...MS
(X) → OM1...MS

(X) + XM1FM2...MS
(X) gets mapped to the same physical field. This

SO(d + 1, 1) tensor is sometimes referred to as pure gauge in the literature. It is this gauge redundancy that
reduces another degree of freedom per index by making it unphysical.

2.4 Examples: Two point and Three point correlator

In the last section we showed how the embedding space formalism put in place could be used to deduce the
conformally invariant correlator. In this section we will utilize the formalism and explicitly construct two point
and three point function using the formalism developed thus far. From 1.3, we know that the ratios are only
invariant under dilatation and translation. Therefore, we seek to construct an invariant out of these ratios and
metric tensor which is also invariant under SCT and the exchange of indices µ ↔ ν. First we will derive the
form of scalar one point correlator. A scalar primary is denoted by Ô∆ (notice the absence of the Lorentz index,
which indicates that it is a scalar operator). We want to enforce the invariance of correlator under conformal
transformation. For a one-point function, this reduces to

⟨Ô∆(x
′µ)⟩ = ⟨ ˆ̃O∆(x

′µ)⟩ (2.1)

This condition must be enforced for all four conformal transformations. We will begin by enforcing translation.

Translation: x̃µ = xµ + aµ

It was given previously that the Jacobian for a translation is one. Therefore, our operator simply does not
change under this translation

ˆ̃O∆(x̃
µ) = Ô∆(x

µ)

enforcing this in (2.1), we are left with

⟨Ô∆(x̃
µ)⟩ = ⟨Ô∆(x

µ)⟩
3symmetric tensors with spin s under SO(d) form irreducible representations that correspond to integer spin particles (bosons).

Anti-symmetric tensor fields have interpretation like they correspond to bivector of spinors etc.
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where the operators are now the same on both sides of the equation. Notice that a correlation function is just
a function. Therefore, this is equivalent to saying

f(x̃µ) = f(xµ)

Since this must be true for every possible translation, this tells us that the function has the same output
regardless of what the input is, which means the function must just be some constant. Therefore, by enforcing
translation we can conclude that

⟨Ô∆(x̃
µ)⟩ = ⟨Ô∆(x

µ)⟩ = constant = C

We are not yet done. We need to make sure that all four transformations leave the one-point function
invariant. Let’s see what we can learn when we enforce dilatation.

Dilatation: x̃µ = λxµ

Applying the Jacobian for dilitation, we see our Primary Scalar Operator transforms as

ˆ̃O∆(x̃
µ) =

∣∣∣∣∂xµ∂x̃ν

∣∣∣∣∆/D

Ô∆(x
µ) = λ−∆Ô∆(x

µ)

We want to enforce this in (2.1) and use our results from enforcing translation invariance. This gives us

⟨Ô∆(x̃
µ)⟩ = ⟨ ˆ̃O∆(x̃

µ)⟩
= ⟨λ−∆Ô∆(x

µ)⟩
= λ−∆⟨Ô∆(x

µ)⟩

We found previously, by enforcing translation, that

⟨Ô∆(x̃
µ)⟩ = C

which means

C = λ−∆C

This equation must be true for arbitrary scale factor λ. Therefore, unless ∆ = 0, we can conclude that C = 0.
For unitary CFTs, the only ∆ = 0 operator is the identity operator. So, with the exception of the identity,

all one-point functions must vanish!

⟨Ô∆(x
µ)⟩ = 0 for ∆ ̸= 0 (2.2)

We said that we must impose all four conformal transformations, but the others are trivially satisfied at this
point. So we are done with one-point correlators! Again, we’d like to highlight the fact that this is the result
for ALL CFTs. You don’t need to know anything else about the system, only that it has conformal symmetry.

2.4.1 Two-point Scalar Primary

For two-point functions, we need to enforce

⟨Ô∆1
(x̃µ1 )Ô∆2

(x̃µ2 )⟩ = ⟨ ˆ̃O∆1
(x̃µ1 )

ˆ̃O∆2
(x̃µ2 )⟩ (2.3)

Again, this must be done for all four conformal transformations. As with the one-point function, we will begin
by enforcing translation.

Translation

First, notice that ⟨Ô∆1
(x̃µ1 )Ô∆2

(x̃µ2 )⟩ is an object that takes two positions as inputs and gives back a number,
so we can just write this as a function of x̃µ1 and x̃µ2

⟨Ô∆1
(x̃µ1 )Ô∆2

(x̃µ2 )⟩ = f(x̃µ1 , x̃
µ
2 )

We found previously that under translations, scalar primary operators transform as

ˆ̃O(x̃µ) = Ô(xµ)
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Putting this result in the right side of equation (2.3), we find that

⟨Ô∆1(x̃
µ
1 )Ô∆2(x̃

µ
2 )⟩ = ⟨Ô∆1(x

µ
1 )Ô∆2(x

µ
2 )⟩

Notice that the only differences between the left and right side of this equation are the inputs. The function
on each side is the same

f(x̃µ1 , x̃
µ
2 ) = f(xµ1 , x

µ
2 )

Under translation, we have x̃µ = xµ + aµ → xµ = x̃µ− aµ. If we put this into the previous equation it becomes

f(xµ1 − aµ, xµ2 − aµ) = f(xµ1 , x
µ
2 ) , ∀aµ

This must be true regardless of the value of aµ which means that aµ must somehow cancel out. This is only
satisfied if it is a function of xµ1 − xµ2 so we have

f(xµ1 , x
µ
2 ) = f(xµ1 − xµ2 )

That is, our function cannot be any function of the two positions. Rather, it can only depend on the displacement
between the two positions. Therefore,

⟨Ô∆1
(xµ1 )Ô∆2

(xµ2 )⟩ = f(xµ1 − xµ2 )

Let’s now see what we can learn by enforcing rotation.

Rotation x̃µ = Λµ
νx

µ

The Jacobian for rotation is the same as for translation, 1. Therefore, scalar primary operators transform the
same under rotation as they do under translation

⟨Ô∆1
(x̃µ1 )Ô∆2

(x̃µ2 )⟩ = ⟨Ô∆1
(xµ1 )Ô∆2

(xµ2 )⟩

Re-expressing this in a more familiar form, as functions, we have

f(x̃µ1 , x̃
µ
2 ) = f(xµ1 , x

µ
2 )

Next, we impose what we found by imposing translational invariance

f(x̃µ1 − x̃µ2 ) = f(xµ1 − xµ2 )

Expressing the transformed coordinates in terms of our original coordinate system, we find

f(Λµ
ν (x

ν
1 − xν2)) = f(xµ1 − xµ2 )

This tells us that applying a rotation has no effect on the output. This means that the function must depend
only on the magnitude of the separation |xµ1 − xµ2 | (Recall, rotating a vector changes it, but rotating a scalar
does nothing). So, from applying translational and rotational invariance, we can conclude that

⟨Ô∆1
(xµ1 )Ô∆2

(xµ2 )⟩ = f(|xµ1 − xµ2 |)
We will now continue by enforcing invariance under dilatation.

Dilatation

Recall, under dilatation, scalar primary operators transform as

ˆ̃O∆(x̃
µ) = λ−∆Ô∆(x

µ)

Substituting this into our two-point function condition, eqn. (2.3), we have

⟨Ô∆1
(x̃µ1 )Ô∆2

(x̃µ2 )⟩ = ⟨ ˆ̃O∆1
(x̃µ1 )

ˆ̃O∆2
(x̃µ2 )⟩

= ⟨λ−∆1Ô∆1
(xµ1 )λ

−∆2Ô∆2
(xµ2 )⟩

= λ−∆1λ−∆2⟨Ô∆1
(xµ1 )Ô∆2

(xµ2 )⟩
= λ−(∆1+∆2)f(|xµ1 − xµ2 |)
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where we are able to pull the λ’s out of the correlator because they are just scalars. Notice also that we used
what we already learned from translational and rotational invariance. This tells us that

f(|x̃µ1 − x̃µ2 |) = λ−(∆1+∆2)f(|xµ1 − xµ2 |)

We can apply the transformation to the coordinates on the left-hand-side, which gives

f(λ|xµ1 − xµ2 |) = λ−(∆1+∆2)f(|xµ1 − xµ2 |)

What does this mean? We can consider expanding our function in a power series

f(|xµ1 − xµ2 |) =
∑
n

cn|xµ1 − xµ2 |n

Substituting this in above gives∑
n

cnλ
n|xµ1 − xµ2 |n = λ−(∆1+∆2)

∑
n

cn|xµ1 − xµ2 |n

This is only satisfied for all λ, if all n = 0 except n = −(∆1 + ∆2). Therefore, after enforcing translation,
rotation, and dilatation symmetry we have

⟨Ô∆1
(xµ1 )Ô∆2

(xµ2 )⟩ = C|xµ1 − xµ2 |−(∆1+∆2) (2.4)

where C is some undetermined constant.

Special Conformal Transformation

Enforcing special conformal symmetry directly is a very messy business. Luckily for us, as discussed previously,
a special conformal transformation is equivalent to performing an inversion, followed by a translation, followed
by another inversion. Since we have already enforced translational invariance, this means it is sufficient to
enforce inversion invariance, which is much easier. Recall, an inversion is given by

xµ =
x̃µ

x̃2

As with the other transformations, we need the Jacobian for inversion in order to see how the operators will
transform. This is given by ∣∣∣∣∂xµ∂x̃ν

∣∣∣∣ = 1

x̃2D

Therefore, under inversion, scalar primary operators transform as

ˆ̃O∆(x̃
µ) =

(
1

x̃2D

)∆/D

Ô∆(x
µ) =

1

(x̃2)∆
Ô∆(x

µ)

As usual, we will now go put this into equation (2.3) to enforce the symmetry

⟨Ô∆1
(x̃µ1 )Ô∆2

(x̃µ2 )⟩ = ⟨ ˆ̃O∆1
(x̃µ1 )

ˆ̃O∆2
(x̃µ2 )⟩

=

〈
1

(x̃21)
∆1
Ô∆1(x

µ
1 )

1

(x̃22)
∆2
Ô∆2(x

µ
2 )

〉
=

1

(x̃21)
∆1

1

(x̃22)
∆2
⟨Ô∆1

(xµ1 )Ô∆2
(xµ2 )⟩

Now, we can use our result from enforcing dilitation to replace ⟨Ô∆1
(x̃µ1 )Ô∆2

(x̃µ2 )⟩ on the left and ⟨Ô∆1
(xµ1 )Ô∆2

(xµ2 )⟩
on the right of this equation to get

C

|x̃µ1 − x̃µ2 |∆1+∆2
=

1

(x̃21)
∆1

1

(x̃22)
∆2

C

|xµ1 − xµ2 |∆1+∆2
(2.5)

With a bit of algebra, this is equivalent to

(x̃21)
∆1(x̃22)

∆2

|x̃µ1 − x̃µ2 |∆1+∆2
=

1

|xµ1 − xµ2 |∆1+∆2
(2.6)
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In order to put this in a more friendly form, we will use the following identity for inversions. Note: verifying
this relationship requires substituting in the inversion transformation and some algebra. The reader is highly
encouraged to check it.

x̃21x̃
2
2

(x̃µ1 − x̃µ2 )2
=

1

(xµ1 − xµ2 )2
(2.7)

Using this identity in eqn. (2.6), we find

(x̃21)
∆1(x̃22)

∆2

|x̃µ1 − x̃µ2 |∆1+∆2
=

[
x̃21x̃

2
2

|x̃µ1 − x̃µ2 |2
]∆1+∆2

2

This is only satisfied if
∆1 = ∆2

Therefore, we find that the two-point function vanishes, unless the dimensions of the two operators are the
same. In summary, the two-point function for scalar primaries in ANY CFT is given by

⟨Ô∆1
(xµ1 )Ô∆2

(xµ2 )⟩ =
Cδ∆1∆2

|xµ1 − xµ2 |∆1+∆2
(2.8)

Note that it is standard convention to choose to normalize your operators so that C = 1, so you will often see
this without the C constant included. We leave it here for complete generality.

From Quantum Field Theory

The Euclidean space correlator can be calculated by Fourier Transforming the momentum space propagator

G
(0)
E (x− x′) =

∫
dDp

(2π)D
G

(0)
E (p) e ipµ(xµ−x′

µ)

where,

G
(0)
E (p) =

1

p2

Therefore, the correlation function in real (Euclidean) space is the integral

G
(0)
E (x− x′) =

∫
dDp

(2π)D
e ipµ(xµ−x′

µ)

p2

we can simplify the integrand by using Schwinger trick:

1

p2
=

1

2

∫ ∞

0

dα e−
α
2 p2

Now, let’s use this to re-express our correlator as double integral

G
(0)
E (x− x′) = 1

2

∫ ∞

0

dα

∫
dDp

(2π)D
e−

α
2 p2+ipµ(xµ−x′

µ)

The integrand is gaussian and integral can be calculated by considering shift in variable

α

2
p2 − ipµ(xµ − x′µ) =

1

2

(√
αpµ − ixµ−x′

µ√
α

)2
+

1

2

(
xµ−x′

µ√
α

)2
and by using the Gaussian integral,∫

dDp

(2π)D
e
− 1

2

(
√
αpµ−i

xµ−x′
µ√

α

)2

= (2πα)−D/2

We find the correlation function to be,

G
(0)
E (x− x′) = 1

2(2π)D/2

∫ ∞

0

dαα−D/2 e−
|x−x′|2

2α =
Γ
(
D
2 − 1

)
4π

D
2 |x− x′|D−2

This is same as what we found previously by considering only symmetry constraint with ∆ = D
2 − 1 as found

in (1.29).
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2.4.2 Three-point Scalar Primary

For the three-point function, we need to enforce

⟨Ô1(x
µ
1 )Ô2(x

µ
2 )Ô3(x

µ
3 )⟩ = ⟨ ˆ̃O1(x

µ
1 )

ˆ̃O2(x
µ
2 )

ˆ̃O3(x
µ
3 )⟩ (2.9)

Enforcing the symmetries for the three-point function follows in a very similar way to the two-point function,
so we will not include as much detail. The reader is encouraged to work through any excluded details on their
own.

Poincaré

For translations and rotations, the same line of argumentation that was used for two-point functions can be
applied. However, instead of two points at our disposal, we have three. Therefore, our function can be a
function of the magnitude of the separations between any parings of three points.

⟨Ô1(x
µ
1 )Ô2(x

µ
2 )Ô3(x

µ
3 )⟩ = f(|xµ12|, |xµ23|, |xµ31|)

where |xµ12| = |xµ1 − xµ2 |, |xµ23| = |xµ2 − xµ3 |, and |xµ31| = |xµ3 − xµ1 |.

Dilatation

Enforcing dilitation invariance with our three-point function, we have

⟨Ô∆1
(x̃µ1 )Ô∆2

(x̃µ2 )Ô∆3
(x̃µ3 )⟩ = ⟨ ˆ̃O∆1

(x̃µ1 )
ˆ̃O∆2

(x̃µ2 )
ˆ̃O∆3

(x̃µ3 )⟩
= ⟨λ−∆1Ô∆1(x

µ
1 )λ

−∆2Ô∆2(x
µ
2 )λ

−∆3Ô∆3(x
µ
3 )⟩

= λ−∆1λ−∆2λ−∆3⟨Ô∆1
(xµ1 )Ô∆2

(xµ2 )Ô∆3
(xµ3 )⟩

Using our results from enforcing Poincaré invariance, this becomes

f(|x̃µ12|, |x̃µ23|, |x̃µ31|) = λ−(∆1+∆2+∆3)f(|xµ12|, |xµ23|, |xµ31|) (2.10)

Subsituting in the dilitation transformation on the LHS, this is

f(λ|xµ12|, λ|xµ23|, λ|xµ31|) = λ−(∆1+∆2+∆3)f(|xµ12|, |xµ23|, |xµ31|) (2.11)

As with the two-point function, we can expand our function in a power series.

f(|xµ12|, |xµ23|, |xµ31|) =
∑
nmp

cnmp|xµ12|n|xµ23|m|xµ31|p (2.12)

Substituting this in, we find that all terms must vanish, unless

n+m+ p = −(∆1 +∆2 +∆3)

Therefore, dilitation and Poincaré invariance tell us

⟨Ô1(x
µ
1 )Ô2(x

µ
2 )Ô3(x

µ
3 )⟩ =

∑
nmp=−(∆1+∆2+∆3)

cnmp|xµ12|n|xµ23|m|xµ31|p (2.13)

Special Conformal Transformation

Again, to find the effect of imposing special conformal symmetry, we need only to impose inversion symmetry,
which is much easier. Although easier, the algebra is still quite nasty and will not be shown here. Ultimately,
inversion (therefore special conformal) invariance leads to the additional constraint that all terms vanish, unless

n = ∆1 +∆2 −∆3

m = ∆1 +∆3 −∆2

p = ∆2 +∆3 −∆1

(2.14)
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Therefore, after enforcing all of the conformal symmetries on the 3-point function of scalar primaries, we find

Ô∆1(x
µ
1 )Ô∆2(x

µ
2 )Ô∆3(x

µ
3 ) =

C123

|xµ12|n|xµ23|m|xµ31|p
(2.15)

where n, m, and p are given by (2.14). We find that, as was the case with the two-point scalar primaries,
the spatial dependence of 3-point scalar primaries are completely determined. We are left only with a set of
constants C123. It turns out that this set of constants is vitally important to defining any particular conformal
field theory and they tell you how much your given operators interact. This set of constants goes by various
names including the 3-point coefficients, the OPE coefficients, and the structure constants.

2.4.3 Going beyond scalars

Moving on, we next consider the two point corrector of vector field. The ansatz for such a correlator is:4

⟨Jµ(x1)Jν(x2)⟩ = C
1

|x1 − x2|2∆
same as scalar case

[
gµν + δ

(x1 − x2)µ(x1 − x2)ν
(x1 − x2)2

]

The correlation function is invariant under translation, therefore we will consider following redefinition:

⟨Jµ(x1)Jν(x2)⟩ = ⟨Jµ(x1 − x2)Jν(0)⟩
= ⟨Jµ(x12)Jν(0)⟩ = ⟨Jµ(x)Jν(0)⟩

Since SCT is just inversion→translation→inversion, we can this property to our advantage. As the correlation
function is already invariant under translations, it suffices to verify its invariance under inversions. If this
property holds, then by extension, the correlation function will also be invariant under SCT. The inversion
transformation is given as5:

x′µ =
xµ
x2

|x′|2 =
1

|x|2

and

∂x′ν
∂xµ

=
∂

∂xµ
xν
x2

=
1

x2

[
gµν − 2

xµxν
x2

]
= x′2

[
gµν − 2

x′µx
′
ν

x′2

]
︸ ︷︷ ︸

Iµν

The vector field would transform as

⟨Jµ(x′1)Jν(x′2)⟩ =
∣∣∣∣ ∂xα∂x′µ

∣∣∣∣∆/d∣∣∣∣ ∂xβ∂x′ν

∣∣∣∣∆/d︸ ︷︷ ︸
this was used to derive

the correlation function for scalar case

without conformal factor

∂x′α
∂xµ

∂x′β
∂xν

〈
Jα(x1)J

β(x2)
〉

we see that ∣∣∣∣ ∂xα∂x′µ

∣∣∣∣∆/d
x=x1︸ ︷︷ ︸

|x′
1|−2∆

∣∣∣∣ ∂xβ∂x′ν

∣∣∣∣∆/d
x=x2

1

|x12|2∆
= |x′1|

−2∆|x′2|
−2∆ 1

|x12|2∆
=

1

|x′12|2∆

where we used

|x′12|
2
=

(
xµ1
x21
− xµ2
x22

)2

4pg 24 of “CFT with boundary and defects” by Herzog
5pg 17-18 of “Quantum Gravity and Cosmology based on Conformal Field Theory” and section 4.5 of “A conformal field theory

primer in D ≥ 3” by Andrew Evans
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=
|x1|2
x41

+
|x2|2
x42
− 2

xµ1
x21

x2µ
x22

=
1

x21
− 2

x1
x21
· x2
x22

+
1

x22

=
(x1 − x2)2
x21x

2
2

=
|x12|2

|x1|2|x2|2
=

|x12|2

|x′1|−2|x′2|−2

Then, we only have to ensure that gµν + δ
x′µ
12x

′ν
12

x′2
12

is invariant under inversion.6

gµν + δ
(x′12)

µ(x′12)
ν

(x′12)
2

=

(
δµα − 2

xµ1x1α
x21

)(
δνβ − 2

xν2x2β
x22

)[
gαβ + δ

xα12x
β
12

x212

] ∣∣∣∣∣
xµ= x′µ

|x′|2

=

(
δµα − 2

x′µ1 x
′
1α

|x1|
′2

)(
δνβ − 2

x′ν2 x
′
2β

|x′2|2

)[
gαβ + δ

(x′1|x′2|2 − x′2|x′1|2)α(x′1|x′2|2 − x′2|x′1|2)β
x

′2
12|x′1|2|x′2|2

]

=

[
gµβ + δ

(x′1|x′2|2 − x′2|x′1|2)µ(x′1|x′2|2 − x′2|x′1|2)β
x

′2
12|x′1|2|x′2|2

− 2
x′µ1 x

′β
1

|x1|
′2

− 2δ
x′µ1 (���|x′1|2|x′2|2 − x′1 · x′2���|x′1|2)(x′1|x′2|2 − x′2|x′1|2)β

x
′2
12|x′1|2���|x′1|2|x′2|2

](
δνβ − 2

x′ν2 x
′
2β

|x′2|2

)

=

[
gµβ − δ (x

′
1|x′2|2 + x′2|x′1|2 − 2x′1(x

′
1 · x′2))µ(x′1|x′2|2 − x′2|x′1|2)β

x
′2
12|x′1|2|x′2|2

− 2
x′µ1 x

′β
1

|x1|
′2

](
δνβ − 2

x′ν2 x
′
2β

|x′2|2

)

=

[
gµν − δ (x

′
1|x′2|2 + x′2|x′1|2 − 2x′1(x

′
1 · x′2))µ(x′1|x′2|2 − x′2|x′1|2)ν

x
′2
12|x′1|2|x′2|2

− 2
x′µ1 x

′ν
1

|x1|
′2

]
− 2

x′ν2 x
′µ
2

|x′2|2
+ 2δ

(x′1|x′2|2 + x′2|x′1|2 − 2x′1(x
′
1 · x′2))µ(x′2 · x′1���|x′2|2 −���|x′2|2|x′1|2)x′ν2

x
′2
12|x′1|2|x′2|2���|x′2|2

+ 4
x′µ1 x

′ν
2 (x′1 · x′2)
|x1|

′2

= gµν − 2
x′µ1 x

′ν
1

|x1|
′2
− 2

x′ν2 x
′µ
2

|x′2|2
+ 4

x′µ1 x
′ν
2 (x′1 · x′2)
|x1|

′2

− δ {x
′
1|x′2|2 + x′2|x′1|2 − 2x′1(x

′
1 · x′2)}µ{x′1|x′2|2 + x′2|x′1|2 − 2(x′1 · x′2)x′2}ν
x

′2
12|x′1|2|x′2|2

= gµν − 2
x′µ1 x

′ν
1

|x1|
′2
− 2

x′ν2 x
′µ
2

|x′2|2
+ 4

x′µ1 x
′ν
2 (x′1 · x′2)
|x1|

′2

− δ {x
′
2|x′1|2 + |x′1 − x′2|2x′1 − |x′1|2x′1}µ{x′1|x′2|2 + |x′1 − x′2|2x′2 − |x′2|2x′2}ν

x
′2
12|x′1|2|x′2|2

= gµν − 2
x′µ1 x

′ν
1

|x1|
′2
− 2

x′ν2 x
′µ
2

|x′2|2
+ 4

x′µ1 x
′ν
2 (x′1 · x′2)
|x1|

′2

+ δ
x′µ12x

′ν
12

x
′2
12

− δ x
′µ
1

|x′1|2
x′ν12 + δ

x′ν2
|x′2|2

x′µ12 − δ|x′12|
2 x′µ1 x

′ν
2

|x′1|2|x′2|2

= gµν − (δ + 2)
x′µ1 x

′ν
1

|x1|
′2
− (δ + 2)

x′ν2 x
′µ
2

|x′2|2
+ 2(δ + 2)

x′µ1 x
′ν
2 (x′1 · x′2)
|x1|

′2
+
�

�
��δ

x′µ1 x
′ν
2

|x′1|2
+
�

�
��δ

x′µ1 x
′ν
2

|x′2|2

−
�������
δ|x′1|

2 x′µ1 x
′ν
2

|x′1|2|x′2|2
−
�������
δ|x′2|

2 x′µ1 x
′ν
2

|x′1|2|x′2|2
+ δ

x′µ12x
′ν
12

x
′2
12

which implies δ = −2. Hence, the two point function is given as

6the conformal factor is there following eqn 55 of TASI Lectures on the Conformal Bootstrap. The tensor operator under
inversion transforms as mentioned in eqn 3.18 of Conformal Field Theory with Boundaries and Defects or eqn 1.55 and 1.60 of
EPFL Lectures on Conformal Field Theory in D¿= 3 Dimensions

O′µ(x′) =

∣∣∣∣ ∂xα

∂x′β

∣∣∣∣∆+1
d ∂x′µ

∂xν
Oν(x′) =

∣∣∣∣ ∂xα

∂x′β

∣∣∣∣∆/d

Iµν (x
′)Oν(x′)

O′
µ(x

′) =

∣∣∣∣ ∂xα

∂x′β

∣∣∣∣∆−1
d ∂xν

∂x′µOν(x
′)

https://arxiv.org/pdf/1602.07982
https://www.ggi.infn.it/laces/LACES21/CFTdefects21_CFTnotes.pdf
https://arxiv.org/abs/1601.05000
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⟨Jµ(x)Jν(0)⟩ =
C

|x|2∆
[
gµν − 2

xµxν
x2

]
The embedding space formalism gives the same answer7: Considering a tensor field of SO(d+ 1, 1) denoted as
OA1...An

(X), with the properties

• defined on the null-cone X2 = 0,

• traceless and symmetric,

• homogeneous of degree −∆ in X, i.e., OA1...An
(λX) = λ−∆OA1...An

(X),

• transverse XAiOA1...An
(X) = 0, with i = 1, ..., n

It is clear that those are conditions rendering OA1...An(X) manifestly invariant under SO(d+1, 1). In order to
find the corresponding tensor in Rd, one has to restrict OA1....An

(X) to the Poincaré section and project the
indices as

⟨Oµ(x1)O
ν(x2)⟩ =

∂XA
1

∂xµ1

∂XB
1

∂xν2
⟨OA(X1)OB(X2)⟩

For example, the most general form of the two-point function of two operators with spin-1 and dimension ∆
can be derived as:8

〈
OA(X1)O

B(X2)
〉
=

C12

(X1 ·X2)∆

[
ηAB + α

XA
2 X

B
1

X1 ·X2
+ β

XA
1 X

B
2

X1 ·X2

]
We will drop the last term as it projects to zero anyways.

〈
OA(X1)O

B(X2)
〉
=

C12

(X1 ·X2)∆

[
ηAB + α

XA
2 X

B
1

X1 ·X2

]
According to the transverse condition

XA1

〈
OA(X1)O

B(X2)
〉
=

C12

(X1 ·X2)∆
[XB

1 + αXB
1 ] = 0 =⇒ α = −1

we now use the projection to find the correlation function in Rd:

⟨Oµ(x1)Oν(x2)⟩ =
∂XA

1

∂xµ1

∂XB
2

∂xν2
⟨OA(X1)OB(X2)⟩

=
∂XA

1

∂xµ1

∂XB
2

∂xν2

C12

(X1 ·X2)∆

[
ηAB −

XA2XB1

X1 ·X2

]
=

C12

(X1 ·X2)∆

[
∂XA

1

∂xµ1

∂XB
2

∂xν2
ηAB −

∂XA
1

∂xµ1

∂XB
2

∂xν2

XA2XB1

X1 ·X2

]
=

C12

(x1 − x2)2∆
[
gµν − 2

(x1 − x2)µ(x1 − x2)ν
(x1 − x2)2

]
where we used XA = (Xa, X+, X−) = (xa, 1, x2), XB =

(
xa,− 1

2x
2,− 1

2

)
and ηab = Id×d with η+− = η−+ =

−1/2

∂XA
1

∂xµ1

∂XB
2

∂xν2
ηAB = gµν

∂XA
1

∂xµ1
XA2 = ηab

∂xa1
∂xµ1

xb2 −
1

2�
�
�7
0

∂1

∂xµ1
x22 −

1

2

∂x21
∂xµ1

1

7section 2.4 of “Conformal field theory in momentum space and anomaly actions in gravity The analysis of three- and four-point
functions” or section 5.2.2 of “Conformal Field Theory” by Loriano Bonora

8here the terms in bracket is chosen such that they are invariant under the replacement x → λx. We are not using the
transformation law for any of them. Under which, even the metric will change to ηAB → λ−2ηAB .
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= ηabδ
a
µx

b
2 − x1µ = (x2 − x1)µ = −(x1 − x2)µ

∂XB
2

∂xν2
XB1 = ηab

∂xa2
∂xµ2

xb1 −
1

2�
�
�7
0

∂1

∂xµ2
x21 −

1

2

∂x22
∂xµ2

1 = (x1 − x2)ν

(X1 −X2)
A(X1 −X2)A = (x1 − x2)a(x1 − x2)a −

1

2
(1− 1)(x21 − x22)− (x21 − x22)( 12 − 1

2 )

=⇒ X1 ·X2 = −1

2
(x1 − x2)2

Next, we boostrap three point correlator. 9 On the null cone we will have

⟨ϕ1(X1)ϕ2(X2)JM (X3)⟩ =
WM

(−2X1 ·X2)α123(−2X1 ·X3)α132(−2X2 ·X3)α231

where the powers αijk of the scalar factor are determined by the dilatation as in case of scalar operators and
the tensor structure WM equals to

WM =
(−2X2 ·X3)X1M − (−2X1 ·X3)X2M − (−2X1 ·X2)X3M

(−2X1 ·X2)
1
2 (−2X1 ·X3)

1
2 (−2X2 ·X3)

1
2

.

Let us comment a few things on the tensor structure. The relative sign is, as before, fixed by transversality.

(X1)
MWM = 0

(X2)
MWM = 0

(X3)
MWM = 0

We drop the term proportional to X3M , since would project to zero anyway. The scaling behavior of correlation
function under dilatation is completely determined in the scalar part so the tensor structure have scaling 0 in
all variables (X → λX =⇒ Wµ → λ0Wµ). Finally, it is immediate to check that the tensor structure is
transverse, i.e. (X3)MWM = 0. Projecting to physical space as:

⟨ϕ1(x1)ϕ2(x2)Jµ(x3)⟩ =
∂XM

3

∂xµ3
⟨ϕ1(X1)ϕ2(X2)JM (X3)⟩

we find, as explicitly computed before,

∂XM
3

∂xµ3
XiM = (xi − x3)µ, i = 1, 2

−2Xi ·Xj = (xi − xj)2, i = 1, 2, 3 (i < j),

so that we end up with the tensor structure

Wµ =
|x2 − x3|2(x1 − x3)µ − |x1 − x3|2(x2 − x3)µ

|x1 − x2||x1 − x3||x2 − x3|
=
|x23|2(x13)µ − |x13|2(x23)µ

|x12||x13||x23|
Therefore, the three-point function of two scalars and one spin 1 operators in physical space is given by

⟨ϕ1(x1)ϕ2(x2)Jµ(x3)⟩ =
|x23|2(x13)µ−|x13|2(x23)µ

|x12||x13||x23|
|x12|∆1+∆2−∆3 |x13|∆1+∆3−∆2 |x23|∆2+∆3−∆1

=
|x23|2(x13)µ − |x13|2(x23)µ

|x12|∆1+∆2−∆3+1|x13|∆1+∆3−∆2+1|x23|∆2+∆3−∆1+1

The three-point function of higher-spin operators Jµ1...µℓ
is constructed from the above, analogously as what

we did for the two-point functions, since it turns out that Wµ is the only indexed object for three points that
is conformal invariant.

2.5 Fermions in Embedding Space

Following is taken from section 3.2 of Lectures on Conformal Field Theories by Hugh Osborn. To discuss
spinor fields in the embedding formalism requires extending the usual d−dimensional gamma matrices to d+2
dimensions. For d = 2n, we define10

a±0 =
1

2
(±γ0 + γ1)

9pg 30 of Masters Thesis on “Spinning Correlators at Finite Temperature” of Oscar Arandes Tejerina
10we have abused notation for the sake of avoiding cluttering of indices and ±
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a±1 =
1

2
(γ2 ± iγ3)

a±2 =
1

2
(γ4 ± iγ5)

...

a±d−2
2

=
1

2
(γd−2 ± iγd−1)

where gamma matrices satisfy
{γµ, γν} = 2δµν

One can show that:

{a−i , a−j } = {a+i , a+j } = 0

{a−i , a+j } = δij i, j = 0, 1, 2 . . . d−2/2. (2.16)

In the literature d−2/2 is defined as another variable labeled by k, but for the sake for clarity we will keep it
explicit. This is the algebra of raising and lowering operators for d/2 independent two-level systems. We ask
how many basis vectors are there (including lowest weight state) which could be formed by operating d/2 raising
a+i on lowest weight state:11

d/2∑
r=0

d/2Cr = 2
d/2

It implies that in d−dimensions, we have 2d/2× 2d/2 dimensional matrix representation for γ−matrices. We will
use the highest weight representation to determine a±j and then use them to construct γµ. From (2.16), we
quickly observe that

(a−i )
2 = 0 = (a+i )

2

It implies that we can only act ai or a
†
i once on a state, the second time it acts the state is annihilation. We

will build off our intuition from harmonic oscillator (fermionic) and assume that there is a lowest weight state
|ξ⟩ such that

a−i |ξ⟩ = 0 for all i

Similarly, acting on it once by each a†i for all i, we can construct states in the representation. The states can
be labeled s = (s0, s1, ..., s d−2

2
), where each of the sa = ± 1

2 :

|ξ(s)⟩ = (a+d−2
2

)
s d−2

2
+ 1

2 . . . (a+0 )
s0+

1
2 |ξ⟩ (2.17)

The lowest weight state |ξ⟩ corresponds to all sa = − 1
2 . Taking the |ξs⟩ as a basis, we derive the matrix

elements of γµ from the definitions and the anti-commutation relation. Starting with d = 2, we have a single
two-level system:

|ξ( 1
2 )⟩ =

(
1
0

)
|ξ(− 1

2 )⟩ =
(
0
1

)
we can construct the raising and lowering operator connecting these two matrices as:

a−0 =

(
0 0
1 0

)
a+0 =

(
0 1
0 0

)
we find:

γ0 =

(
0 1
−1 0

)
γ1 =

(
0 1
1 0

)
For d = 4, we have 2 independent fermionic oscillator:

1
0
0
0



0
1
0
0



0
0
1
0



0
0
0
1


11we would like to remind ourselves that number of linearly independent basis is defined as the dimension of space.
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we construct, the following a+i and a−i operators for i = 0, 1.

a+0 =


0 −1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 a−0 =


0 0 0 0
−1 0 0 0
0 0 0 0
0 0 1 0


and

a+1 =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 a−1 =


0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0


From (2.17) we see that12

a+0


0
0
0
1

 =


0
0
1
0

 ; a+1


0
0
0
1

 =


0
1
0
0

 ; a+0 a
+
1


0
0
0
1

 =


1
0
0
0


Thus, we conclude that the gamma matrices are gives as:

γ0 =


0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

 γ1 =


0 −1 0 0
−1 0 0 0
0 0 0 1
0 0 1 0



γ2 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 γ3 =


0 0 −i 0
0 0 0 −i
i 0 0 0
0 i 0 0


The above choice of gamma matrices satisfy the clifford algebra, however the chosen basis is not familiar from
QFT textbooks. Given a representation γµ in d dimensions, we can construct a representation Γµ in d + 2
dimensions using the prescription,

Γµ = γµ ⊗
(
−1 0
0 1

)
= −γµ ⊗ σ3, µ = 0, . . . , d− 3,

Γd−2 = I⊗
(
0 1
1 0

)
= I⊗ σ1, Γd−1 = I⊗

(
0 −i
i 0

)
= I⊗ σ2

where the σi obey
{σi, σj} = 2δij

The 2 × 2 matrices that we add act on the index sd−2/2, which newly appears in going from d = 2k to
2k + 2 dimensions. In odd dimensions the first d − 1 gamma matrices can be constructed as above, and
Γd = ±Γ1Γ2 . . .Γd−1 completes the gamma matrix algebra. There are two independent representations of the
gamma matrix algebra in odd dimensions, differing in the sign of Γd. These representations are exchanged by
parity, and both representations appear in a parity-conserving theory.

We now move onto calculating the correlation function involving spinors in embedding space formalism. To
define spinor fields on null cone in embedding space requires that the number of component in Rd is half the
number of components in Rd+1,1.

ψ(x)→ Ψ(X), ψ̄(x)→ Ψ̄(X)

which satisfies the following homogeneity condition:

Ψ(λX) = λ−∆+ 1
2Ψ(X), Ψ̄(λX) = λ−∆+ 1

2 Ψ̄(X)

The degrees of freedom of Ψ; Ψ̄ are reduced to those for ψ; ψ̄ by imposing the transversality condition like
before:

Γ̄AX
AΨ(X) = 0 Ψ̄(X)ΓAX

A = 0

12a±0 acts like raising and lowering operator in the same oscillator while a±1 changes the oscillator.
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It introduces the gauge invariance and thus the degrees of freedom are now halved by imposing the equivalence
relations

Ψ′(X) ∼ Ψ′ + Γ̄AX
Aζ(X) Ψ̄′(X) ∼ Ψ̄′ + ζ̄(X)ΓAX

A (2.18)

for arbitrary spinor ζ(X); ζ̄(X) of appropriate homogeneity. From standard QFT, we are familiar that

VA = Ψ̄ΓAΨ
′

transforms like a vector and we also have

Ψ(X) = ΓBX
BΨ′(X),

Ψ̄(X) = Ψ̄′(X)Γ̄BX
B .

Now compute the contraction:

VA = Ψ̄(X)ΓAΨ
′(X) =

(
Ψ̄′(X)Γ̄B XB

)
ΓAΨ

′(X)

= Ψ̄′(X)Γ̄BX
BΓAΨ

′(X)

B-th component of coordinate (number)

Use the Clifford algebra identity:

Γ̄AΓB = −Γ̄BΓA + 2ηAB

ΓAΓ̄B = −ΓBΓ̄A + 2ηAB ,

from (2.18), and above we rewrite:

VA = Ψ̄′Γ̄BX
BΓAΨ

′ = −Ψ̄′Γ̄AΓBX
BΨ′ + 2XAΨ̄

′Ψ′

The second term, 2XAΨ̄
′Ψ′, is proportional to XA and is hence pure gauge under the equivalence relation:

VA ∼ VA +XAf(X)

so it can be discarded in physical quantities. Therefore, we obtain:

Ψ̄ΓAΨ
′ +XAf(X) ∼ −Ψ̄′Γ̄AΓBX

BΨ′ + 2XAΨ̄
′Ψ′

Ψ̄(X)ΓAΨ
′(X) ∼ −Ψ̄′(X)Γ̄AΨ(X)

whereas,
Ψ̄Ψ

transforms like a scalar. However, the above is only under (2.18) in odd dimensions. So it does not correspond
to a scalar on the projective null cone in even dimensions.
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Chapter 3

2D CFT

Conformal invariance takes a new meaning in two dimensions. As already apparent in previous chapter, the case
d = 2 requires special attention. Indeed, there exists in two dimensions an infinite variety of coordinate trans-
formations that, although not everywhere well-defined, are locally conformal: they are holomorphic mappings
from the complex plane (or part of it) onto itself. Among this infinite set of mappings one must distinguish
the 6-parameter global conformal group, made of one-to-one mappings of the complex plane into itself. The
analysis of the previous chapter still holds when considering these transformations only. However, a local field
theory should be sensitive to local symmetries, even if the related transformations are not globally defined. It
is local conformal invariance that enables exact solutions of two-dimensional conformal field theories.

3.1 Conformal Group in Two Dimensions

We begin by considering the flat two-dimensional Euclidean space with coordinates x0 and x1. A conformal
transformation in this space takes the form

xµ → xµ + ϵµ(x)

where the conformal Killing equation imposes the condition

∂µϵν + ∂νϵµ =
2

d
gµν∂

ρϵρ

∂µϵν + ∂νϵµ = gµν(∂0ϵ0 + ∂1ϵ1)

Evaluating these relations component by component, we obtain:

• For µ = ν = 0

2∂0ϵ0 = ∂0ϵ0 + ∂1ϵ1 =⇒ ∂0ϵ0 = ∂1ϵ1

• For µ = ν = 1

2∂1ϵ1 = ∂0ϵ0 + ∂1ϵ1 =⇒ ∂1ϵ1 = ∂0ϵ0

• For µ = 0, ν = 1

∂0ϵ1 + ∂1ϵ0 = 0 =⇒ ∂0ϵ1 = −∂1ϵ0

Thus only two independent constraints remain:

∂0ϵ0 = ∂1ϵ1

∂0ϵ1 = −∂1ϵ0

To make further progress, it is convenient to introduce complex coordinates (z1, z2) ≡ (z, z̄) by embedding the
R2 plane in C2. This embedding allows us to treat the two real directions as components of a single complex
variable on the hypersurface z∗1 = z2, which greatly simplifies the form of the constraints.

45
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z = x0 + ix1

z̄ = x0 − ix1

}
x0 =

z + z̄

2

x1 =
z − z̄
2i

Now let us see how the transformation acts in these coordinates. Under xµ → xµ + ϵµ, we find

z → x0 + ϵ0 + i(x1 + ϵ1) = (x0 + ix1) + (ϵ0 + iϵ1) = z + ϵ(z, z̄)

and similarly,

z̄ → z̄ + ϵ̄(z, z̄)

where we define ϵ̄ = ϵ0 − iϵ1. To rewrite the constraints, we must also translate derivatives into complex
coordinates. Using the chain rule,

∂0 =
∂

∂x0
=

∂z

∂x0
∂

∂z
+

∂z̄

∂x0
∂

∂z̄
= ∂ + ∂̄

∂1 =
∂

∂x1
=

∂z

∂x1
∂

∂z
+

∂z̄

∂x1
∂

∂z̄
= i(∂ − ∂̄)

where ∂ = ∂/∂z and ∂̄ = ∂/∂z̄ are the Wirtinger derivatives:

∂ =
∂

∂z
=
∂x0

∂z

∂

∂x0
+
∂x1

∂z

∂

∂x1
=

1

2

(
∂

∂x0
− i ∂

∂x1

)
(3.1)

∂̄ =
∂

∂z̄
=
∂x0

∂z̄

∂

∂x0
+
∂x1

∂z̄

∂

∂x1
=

1

2

(
∂

∂x
+ i

∂

∂x1

)
(3.2)

We also note that

ϵ0 =
ϵ+ ϵ̄

2

ϵ1 =
ϵ− ϵ̄
2i

Substituting into the first constraint ∂0ϵ0 = ∂1ϵ1, we obtain.

∂0ϵ0 = ∂1ϵ1

(∂ + ∂̄)

(
ϵ+ ϵ̄

2

)
= i(∂ − ∂̄)

(
ϵ− ϵ̄
2i

)
∂ϵ+ ∂ϵ̄+ ∂̄ϵ+ ∂̄ϵ̄ = ∂ϵ− ∂ϵ̄− ∂̄ϵ+ ∂̄ϵ̄

∂̄ϵ = −∂ϵ̄ (3.3)

From the second constraint ∂0ϵ1 = −∂1ϵ0, we similarly find

∂0ϵ1 = −∂1ϵ0

(∂ + ∂̄)

(
ϵ− ϵ̄
2i

)
= −i(∂ − ∂̄)

(
ϵ+ ϵ̄

2

)
∂ϵ− ∂ϵ̄+ ∂̄ϵ− ∂̄ϵ̄ = ∂ϵ+ ∂ϵ̄− ∂̄ϵ− ∂̄ϵ̄

∂̄ϵ = ∂ϵ̄ (3.4)

Combining both (3.3) and (3.4), we conclude

∂ϵ̄ = 0 =⇒ ∂ϵ̄

∂z
= 0

∂̄ϵ = 0 =⇒ ∂ϵ

∂z̄
= 0

This shows that ϵ(z) is holomorphic while ϵ̄(z̄) is antiholomorphic. Therefore, the conformal transformation
factorizes neatly as

z → z + ϵ(z)

z̄ → z̄ + ϵ̄(z̄)
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or equivalently
z → f(z)

with
∂f

∂z̄
= 0

i.e. f(z) is analytic or holomorphic. Since ϵ(z) is holormorphic, it admits a Laurent expansion.

z′ = z + ϵ(z)

= z +
∑
n∈Z

ϵnz
n

= z +
∑
n∈Z

ϵnz
n∂z

=

(
1 +

∑
n∈Z

ϵnz
n∂

)
z

It is now easy to read off the generators of conformal transformation in 2d from above. We define,

rn = zn∂

Similarly,

z̄′ = z̄ + ϵ̄(z̄)

= z̄ +
∑
n∈Z

ϵ̄nz̄
n

= z̄ +
∑
n∈Z

ϵ̄nz̄
n∂̄z̄

=

(
1 +

∑
n∈Z

ϵ̄nz̄
n∂̄

)
z̄

and hence
r̄n = z̄n∂̄

To determine the structure of the conformal algebra, we now compute the commutator between two such
generators. A straightforward calculation shows that the rn satisfy the following commutation relation:

[rm, rn]f(z, z̄) = [zm∂, zn∂]f(z, z̄)

= zm∂(zn∂f)− zn∂(zm∂f)
= zm+n∂2f + zm(∂zn)∂f − zm+n∂2f − zn(∂zm)∂f

= (n−m)zm+n−1∂f

= (n−m)rm+n−1f

Thus,

[rm, rn] = (n−m)rm+n−1

Following the same steps, we can also find

[r̄m, r̄n] = (n−m)r̄m+n−1

and
[rm, r̄n] = 0

It is conventional to redefine the generators as rn = −ln−1. With this shift, the algebra becomes

[rm, rn] = (n−m)rm+n−1

[−lm−1,−ln−1] = −(n−m)lm+n−2

and then shifting m→ m+ 1 and n→ n+ 1

[lm, ln] = (m− n)lm+n
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similarly,

[l̄m, l̄n] = (m− n)l̄m+n

[lm, l̄n] = 0

where
ln = −rn+1 = −zn+1∂

l̄n = −r̄n+1 = −z̄n+1∂̄

This is recognized as Witt algebra. They generate the conformal transformation in 2d Euclidean plane.
To find the subset of generators ln which generate global conformal transformation, we note that zn has two
singularity, one at z = 0 for n < 0 and another at z =∞ for n > 0. Therefore, we impose the restriction that
the representations of Witt algebra does not blow up in the limit z → 0 or z →∞. We start with z → 0 limit,
ln = −zn+1∂ needs to converge, implying:

n+ 1 ≥ 0 =⇒ n ≥ −1

Since z →∞ does not appear as a pole, we consider the conformal mapping w = 1
z which brings the infinity at

origin. Then,

∂ =
∂

∂z
=
∂w

∂z

∂

∂w

= − 1

z2
∂

∂w
= −w2 ∂

∂w

Then,

ln = −zn+1∂ = w−n−1w2∂w

= w−n+1∂w

Then,

1− n ≥ 0 =⇒ n ≤ 1

Therefore, l−1, l0 and l1 generate global conformal transformation on the 2d Euclidean space.

3.2 Global Conformal Transformation

Last section was devoted to finding the generators of global conformal transformation. In this part, we look at
the infinitesimal transformation generated by l−1 , l0 and l1 and then find their finite counterpart. For n = −1,
the generators associated with the infinitesimal transformation z → z + ϵ−1 looks like:

l−1 = z−1+1∂ = ∂

l̄−1 = z̄−1+1∂̄ = ∂̄

So, this generates translation. For n = 0, the generators associated with the infinitesimal transformation
z → z + ϵ0z looks like:

l0 = −z0+1∂ = −z∂
l̄0 = −z̄∂̄

To interpret how the works in complex plane, we will use the polar coordinates z = reiθ and z̄ = re−iθ where
r =
√
zz̄ and θ = 1

2i ln
(
z
z̄

)
∂ =

∂

∂z
=
∂r

∂z

∂

∂r
+
∂θ

∂z

∂

∂θ

=
z̄

2
√
zz̄

∂

∂r
+

1

2i

z̄

z

∂(z/z̄)

∂z

∂

∂θ

=
z̄

2r

∂

∂r
+

1

2iz

∂

∂θ
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=
e−iθ

2

∂

∂r
+
e−iθ

2ir

∂

∂θ

and,

∂̄ =
∂

∂z̄
=
∂r

∂z̄

∂

∂r
+
∂θ

∂z̄

∂

∂θ

=
z

2
√
zz̄

∂

∂r
+

1

2i

z̄

z

∂(z/z̄)

∂z̄

∂

∂θ

=
z

2
√
zz̄

∂

∂r
+

1

2i

z̄

z

(
− z

z̄2

) ∂

∂θ

=
z

2r

∂

∂r
− 1

2iz̄

∂

∂θ

=
eiθ

2

∂

∂r
− eiθ

2ir

∂

∂θ

we can now recast or generators in polar coordinates as following:

l0 = −z∂ = −reiθ
[
e−iθ

2

∂

∂r
+
e−iθ

2ir

∂

∂θ

]
= −r

2

[
∂r −

i

r
∂θ

]

l̄0 = −z̄∂̄

= −re−iθ

[
eiθ

2

∂

∂r
− eiθ

2ir

∂

∂θ

]
= −r

2

[
∂r +

i

r
∂θ

]
It is now clear that the following combination

l0 + l̄0 = −r∂r

is the generator of dilatation and
i(l0 − l̄0) = ∂θ

is the generator of rotation. For n = −1, the generators associated with the infinitesimal transformation
z → z + ϵ1z

2 looks like:

l1 = −z2∂

These are nothing but Mobius transformation.

z′ =
az + b

cz + d

For translation we have a = 1, c = 0 and d = 1 and we have ad− bc = 1. For dilatation and rotation, we have

z′ = z − ϵ0z
= (1− ϵ0)z

=

1−ϵ0√
1−ϵ0

z + 0

0z + 1√
1+ϵ0

=

√
1 + ϵ0z + 0

0z + 1√
1+ϵ0

with a =
√
1 + ϵ0, b = 0, c = 0 and d = 1√

1+ϵ0
so that ad− bc = 1. For SCT, we have

z′ = z + ϵ1z
2

= z(1− ϵ1z)−1
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=
z

1− ϵ1z
=

z + 0

−ϵ1z + 1

Since ϵn is in general a complex number. These are the set of 2× 2 complex matrices with unit determinant.[
a b
c d

]
with ad− bc = 1

These matrices form the group SL(2,C). But under the mapping a → −a, b → −b, c → −c and d → −d, the
generate the same transformation. Therefore, the conformal transformation in 2d forms the group SL(2,C)/Z2.
In the Lorentzian case the group is replaced by SL(2, R) × SL(2, R) = SO(2, 2) where one factor of SL(2, R)
pertains to left-movers and the other to right-movers.

3.3 Virasoro Algebra

In some cases, the regularization scheme used to quantize a classical theory does not preserve the original
symmetry. The classical generators, which we obtain by solving the Killing equations, satisfy a certain alge-
bra—for example, the Witt algebra. However, in the quantum system, the requirement of normal ordering to
render observables finite modifies the algebraic structure. In the next chapter, we will learn how to construct
the corresponding quantum operators systematically using the operator formalism. As a result, these quantum
operators no longer satisfy the Witt algebra but instead form the Virasoro algebra. This is unavoidable; it’s a
reflection of the fact that the classical symmetry is realized projectively in the quantum theory.

The Virasoro algebra is the central extension of Witt algebra. To centrally extend the algebra, a new
generator—called the center—is introduced, which commutes with all other generators. To distinguish from the
generators of Witt algebra, we use the notation Ln to denote the generators of Virasoro algebra. The algebra
is then given as:

[Ln, Lm] = (n−m)Ln+m + cρ(n,m)︸ ︷︷ ︸
complex number

This algebra contains a finite-dimensional subalgebra generated by L0,±1,L̄0,±1. These are the generators that
are well defined all over the complex plane and form the global conformal group in two dimensions just as we
saw in Witt algebra. The rest of the generators are local. The object ρ(n,m) which we have added to centrally
extend the algebra has certain properties: it is a number which depends on n and m, it commutes with all Ln,
it satisfies recursion relation and it vanishes for certain n and m. To see this, let us first note that

[Ln, Lm] = (n−m)Ln+m + cρ(n,m)

[Lm, Ln] = −(n−m)Ln+m + cρ(m,n)

adding above expressions

[Ln, Lm] + [Lm, Ln] = (n−m)Ln+m + cρ(n,m)− (n−m)Ln+m + cρ(m,n)

ρ(n,m) + ρ(m,n) = 0

We have shown that ρ(n,m) is anti-symmetric under the exchange of n↔ m. Now let us set m = 0,

[Lold
n , L0] = nLold

n + cρ(n, 0)

= n
[
Lold
n +

c

n
ρ(n, 0)

]
Redefining the generators for n ̸= 0 as:

Lnew
n = Lold

n +
c

n
ρ(n, 0)

and

Lnew
0 = Lold

0

The algebra of the translated generators should not changed:

[Lold
n , L0] = [Lnew

n − c

n
ρ(n, 0), L0]

[Lnew
n , L0]−

[ c
n
ρ(n, 0), L0

]
= nLold

n + cρ(n, 0)

[Lnew
n , L0] = nLnew

n
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This proves that ρ(n, 0) = 0 for n ̸= 0. For n = 1,m = −1 we have:

[Lold
1 , Lold

−1 ] = 2Lold
0 + cρ(1,−1)

= 2
[
Lold
0 +

c

2
ρ(1,−1)

]
= 2Lnew

0

This, proves that ρ(1,−1) = 0, to find other n and m values for which ρ(n,m) vanishes, we will utilize the
jacobi identity.

[Ln, [Lm, Lr]] + [Lr, [Ln, Lm]] + [Lm, [Lr, Ln]] = 0

For r = 0

[Ln,mLm] + [L0, (n−m)Ln+m] + [Lm,−nLn] = 0

m [(n−m)Ln+m + cρ(n,m)] + (n−m) [−(n+m)Ln+m]− n [(m− n)Lm+n + cρ(m,n)] = 0

[m(n−m)− (n−m)(n+m)− n(m− n)]︸ ︷︷ ︸
=0

Lm+n − c(m+ n)ρ(m,n) = 0

Hence,
(m+ n)ρ(m,n) = 0

It means, ρ(m,n) can only be non zero. if m+n = 0. So, ρ(m,n) = ρ(n,−n)δm+n,0. Next to find the recursion
relation, we utilize,

[Ln, [L1, L−1−n]] + [L−1−n, [Ln, L1]] + [L1, [L−1−n, Ln]] = 0

(n+ 2)[Ln, L−n] + (n− 1)[L−1−n, Ln+1]− (2n+ 1)[L1, L−1] = 0

(n+ 2) [2nL0 + cρ(n,−n)] + (n− 1)[−2(n+ 1)L0 + cρ(−1− n, 1 + n)]− (2n+ 1)2L0 = 0

[2n(n+ 2)− 2(n− 1)(n+ 1)− 2(2n+ 1)]︸ ︷︷ ︸
=0

L0 + c[(n+ 2)ρ(n,−n)− (n− 1)ρ(n+ 1,−n− 1)] = 0

Hence the recursion relation,

ρ(n+ 1,−n− 1) =
n+ 2

n− 1
ρ(n,−n)

under n→ n+ 1,

ρ(n,−n) = n+ 1

n− 2
ρ(n− 1,−n+ 1)

We can see that for n = 1

ρ(1,−1) = 2

−1ρ(0, 0) = 0

For n = 2

ρ(2,−2) = 3

0
ρ(1,−1) = indeterminate

So, we only need to fix ρ(2,−2) and all the other ρ(n,m) gets fixed from that via this recursion relation.

ρ(n,−n) = n+ 1

n− 2
ρ(n− 1,−n+ 1)

=
n+ 1

n− 2
. . .

4

1
ρ(2,−2)

=
1

3!

(n+ 1)!

(n− 2)!
ρ(2,−2) = nC3 ρ(2,−2)

For free boson we normally like to set c = 1 which forces the normalize of ρ(2,−2) = 1/2 since c × ρ(n,m) =

ξc× ρ(n,m)
ξ needs to stay constant.

[Ln, Lm] = (n−m)Ln+m + nC3ρ(2,−2)
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= (n−m)Ln+m + c
(n+ 1)!

6(n− 2)!

1

2

= (n−m)Ln+m + c
(n+ 1)!

12(n− 2)!

A short remark about the central charge that sometimes c and c̄ aren’t complex conjugate of each other which
allows us to interpret z and z̄ as being independent variables even though they are related to each other via
complex conjugation operation.

3.4 How Fields transform under SL(2,C)
There are four types of fields we will be concerned about in 2d CFT. They are chiral fields that only depend
on z (h̄ = 0) and anti-chiral fields which only depend on z̄ (h = 0). It is also common to use the terminology
holomorphic and anti-holomorphic in order to distinguish between chiral and anti-chiral quantities. There is a
special kind of field which has the same transformation law for both Global conformal transformation as well
as local conformal transformaion, we call them Primary fields. Under conformal transformation z → f(z) and
z̄ → f̄(z̄), these Primary fields transform as (passive):

ϕ′(z, z̄) =

(
∂f

∂z

)h(
∂f̄

∂z̄

)h̄

ϕ(z, z̄)

∣∣∣∣
z=f(z),z̄=f̄(z̄)

=

(
∂f

∂z

)h(
∂f̄

∂z̄

)h̄

ϕ(f(z), f̄(z̄))

where (h, h̄) are conformal dimensions/weight of the field ϕ(z, z̄). Sometimes this transformation law (active)
is also expressed as:

ϕ′
(
z, z̄
)
=

(
d

dz
f−1(z)

)h(
d

dz̄
f−1(z̄)

)̄h
ϕ
(
f−1(z), f−1(z̄)

)
Define ζ = f−1(z), ζ̄ = f−1(z̄).

ϕ′
(
z, z̄
)
=

(
dζ

dz

)h(
dζ̄

dz̄

)̄h
ϕ(ζ, ζ̄) with ζ = f−1(z), ζ̄ = f−1(z̄).

Now write the derivative of the inverse in terms of the derivative of f :

dζ

dz

∣∣∣∣∣
ζ=f−1(z)

=
1

d

dζ
f(ζ)

∣∣∣
ζ=f−1(z)

,
dζ̄

dz̄

∣∣∣∣∣
ζ̄=f−1(z̄)

=
1

d

dζ̄
f(ζ)

∣∣∣
ζ̄=f−1(z̄)

.

∴ ϕ′
(
z, z̄
)
=

 1

d

dζ
f(ζ)

∣∣
ζ=f−1(z)


h 1

d

dζ̄
f(ζ)

∣∣
ζ̄=f−1(z̄)


h̄

ϕ
(
f−1(z), f−1(z̄)

)
.

Now replace the left-hand argument f−1(z) by z (relabel ζ 7→ z, ζ̄ 7→ z̄):

ϕ′(z, z̄) =

(
d

dz
f(z)

∣∣∣∣
z=f−1(z)

)−h(
d

dz̄
f(z)

∣∣∣∣
z̄=f−1(z̄)

)−h̄

ϕ
(
f−1(z), f−1(z̄)

)
.

These are active transformation because the RHS has the form πabϕb(Λ
−1x). To see how the transformation

works, we consider the following example, z′ = λz

ϕ′(z, z̄) =

(
∂λz

∂z

)h(
∂λ̄z

∂z̄

)h̄

ϕ(λz, λz̄)

= λhλh̄ϕ(λz, λz̄)

ϕ(z′, z̄′) = λ−hλ−h̄ϕ′(z, z̄)

under infinitesimal conformal transformation z′ = f(z) = z + ϵ,
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ϕ′(z, z̄) = [1 + ∂ϵ]h[1 + ∂̄ϵ̄]h̄ϕ(z + ϵ, z̄ + ϵ̄)

= [1 + ∂ϵ]h[1 + ∂̄ϵ̄]h̄[ϕ(z, z̄) + ϵ∂ϕ(z, z̄) + ϵ̄∂̄ϕ(z, z̄) +O
(
ϵ2
)
]

= ϕ(z, z̄) + ϵ∂ϕ(z, z̄) + ϵ̄∂̄ϕ(z, z̄) + hϕ(z, z̄)∂ϵ+ h̄ϕ(z, z̄)∂̄ϵ̄+O
(
ϵ2
)

= [1 + (ϵ∂ + h∂ϵ) + (ϵ̄∂̄ + h̄∂̄ϵ̄)]ϕ(z, z̄)

So, the variation δϕ(z, z̄) can be given as:

∞∑
n=−∞

ϵn[Ln, ϕ] + ϵ̄n[L̄n, ϕ] = δϕ(z, z̄) = [(ϵ∂ + h∂ϵ) + (ϵ̄∂̄ + h̄∂̄ϵ̄)]ϕ(z, z̄)

In the active point of view,

ϕ′(z, z̄) = [1 + ∂ϵ]−h[1 + ∂̄ϵ̄]−̄hϕ(z − ϵ, z̄ − ϵ̄)
= [1 + ∂ϵ]−h[1 + ∂̄ϵ̄]−h̄[ϕ(z, z̄)− ϵ∂ϕ(z, z̄)− ϵ̄∂̄ϕ(z, z̄) +O

(
ϵ2
)
]

= ϕ(z, z̄)− ϵ∂ϕ(z, z̄)− ϵ̄∂̄ϕ(z, z̄)− hϕ(z, z̄)∂ϵ− h̄ϕ(z, z̄)∂̄ϵ̄+O
(
ϵ2
)

= [1− (ϵ∂ + h∂ϵ)− (ϵ̄∂̄ + h̄∂̄ϵ̄)]ϕ(z, z̄)

The other kind is quasi-primary field, they only transform as primary field under Global conformal trans-
formation.

3.5 Energy Momentum Tensor

Usually, a Field Theory is defined in terms of a Lagrangian action from which one can derive various objects
and properties of the theory. In particular, the energy–momentum tensor can be deduced from the variation
of the action with respect to the metric and so it encodes the behaviour of the theory under infinitesimal
transformations gµν → gµν + δgµν .

S =

∫
dDxL

δS =

∫
dDx

δL
δgµν

δgµν =

∫
dDxTµνδg

µν

Under xµ → xµ + ϵµ(x), δgµν = ∂µϵν + ∂νϵµ.

δS =

∫
dDxTµν(∂

µϵν + ∂νϵµ)

=

∫
dDxTµν

2

D
(∂ρϵρ)g

µν =
2

D

∫
dDxTµ

µ (∂
ρϵρ) = 0 =⇒ Tµ

µ = 0

This tell us that for the conformal invarience to hold, the stress energy tensor has to be traceless.

δS =

∫
dDxTµν(∂

µϵν + ∂νϵµ)

= 2

∫
dDxTµν∂

µϵν

= 2

∫
dDx∂µ(Tµνϵ

ν)− 2

∫
dDx(∂µTµν)ϵ

ν = 0 =⇒ ∂µTµν = 0

Hence, we conclude that stress energy tensor is canonically conserved as well as traceless in the presence of
conformal symmetry. Next we see how this condition gets translated in complex coordinates. The goal is to
find Tzz, Tzz̄, Tz̄z and Tz̄z̄.

Tzz =
∂x0

∂z

∂x0

∂z
T00 + 2

∂x0

∂z

∂x1

∂z
T01 +

∂x1

∂z

∂x1

∂z
T11

=
1

4
T00 + 2

1

2

1

2i
T01 −

1

4
T11

=
1

4
[T00 − 2iT01 − T11]



54 CHAPTER 3. 2D CFT

Tzz̄ =
∂x0

∂z

∂x0

∂z̄
T00 +

∂x0

∂z

∂x1

∂z̄
T01 +

∂x1

∂z

∂x0

∂z̄
T10 +

∂x1

∂z

∂x1

∂z̄
T11

=
1

2

1

2
T00 +

1

2

−1
2i
T01 +

1

2i

1

2
T10 +

1

2i

−1
2i
T11

=
1

4
[T00 + T11] =

1

4
δµνTµν =

1

4
Tµ
µ = 0

Tz̄z̄ =
∂x0

∂z̄

∂x0

∂z̄
T00 + 2

∂x0

∂z̄

∂x1

∂z̄
T01 +

∂x1

∂z̄

∂x1

∂z̄
T11

=
1

4
T00 + 2

1

2

−1
2i
T01 −

1

4
T11

=
1

4
[T00 + 2iT01 − T11]

Next we investigate the form of ∂µTµν in complex coordinates.

∂0T00 + ∂1T10 = 0

∂0T01 + ∂1T11 = 0 (3.5)

We can now calculate ∂z̄Tzz:

∂̄Tzz =
1

4
(∂̄T00 − 2i∂̄T01 − ∂̄T11)

using (3.1) and Tµ
µ = T00 + T11 = 0

=
1

8
[(∂0 + i∂1)T00 − 2i(∂0 + i∂1)T01 − (∂0 + i∂1)T11]

=
1

8
[(∂0T00 + 2∂1T01 − ∂0T11) + i(∂1T00 − 2∂0T01 − ∂1T11)]

=
1

8
[2(∂0T00 + ∂1T01)− 2i(∂1T11 + ∂0T01)] = 0

In the last step we used (3.5). Similarly one can show

∂Tz̄z̄ = 0

Thus, Tzz is the chiral field we discussed earlier and Tz̄z̄ is the anti-chiral field. So in complex coordinates, the
stress energy tensor looks like:

Tµν(z, z̄) =

[
0 T (z)

T̄ (z̄) 0

]

3.6 Ward Identities

The consequence of a symmetry of the action and measure on correlation functions may also be expressed via
the so-called Ward identities. An infinitesimal transformation may be written in terms of the generator as:

ϕ′(x) = ϕ(x)− iωaGaϕ(x)

where ωa is a collection of infinitesimal, constant parameters. We will consider the above variation of fields in
the correlation function. The action is not invariant under such local transformation and its variation is given
by:

δS =

∫
dDx(∂µT

µν)ϵν

where jµa is the conserved current. The correlation function can be given as:

⟨ϕ(x1)ϕ(x2) . . . ϕ(xn)⟩ =
1

Z

∫
Dϕϕ(x1)ϕ(x2) . . . ϕ(xn)e

−S[ϕ]

We use the invariance of correlators under the transformation to argue,

⟨ϕ(x1)ϕ(x2) . . . ϕ(xn)⟩ = ⟨ϕ′(x1)ϕ′(x2) . . . ϕ′(xn)⟩

=
1

Z

∫
Dϕ′ϕ′(x1)ϕ

′(x2) . . . ϕ
′(xn)e

−S[ϕ′] =
1

Z

∫
Dϕ′ϕ′(x1)ϕ

′(x2) . . . ϕ
′(xn)e

−S[ϕ]−δS[ϕ]
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=
1

Z

∫
Dϕ′[ϕ(x1)ϕ(x2) . . . ϕ(xn) + δ(ϕ(x1)ϕ(x2) . . . ϕ(xn))]e

−S[ϕ]−
∫
dDx∂µT

µνϵν(x)

=
1

Z

∫
Dϕ[ϕ(x1)ϕ(x2) . . . ϕ(xn) + δ(ϕ(x1)ϕ(x2) . . . ϕ(xn))]e

−S[ϕ]

(
1−

∫
dDx∂µT

µνϵν(x) + . . .

)
When expanded to first order in ωa(x), the above yields

⟨δ(ϕ(x1)ϕ(x2) . . . ϕ(xn))⟩ =
∫
dx ⟨∂µTµνϕ(x1)ϕ(x2) . . . ϕ(xn)⟩ ϵν(x)

−i
N∑
i=1

[ϕ(x1) . . . G
µ
i ϕ(xi) . . . ϕ(xn)]ϵµ(xi) =

∫
dx ⟨∂µTµνϕ(x1)ϕ(x2) . . . ϕ(xn)⟩ ϵν(x)

−i
∫
dDxϵµ(x)δ

D(x− xi)
N∑
i=1

[ϕ(x1) . . . G
µ
i ϕ(xi) . . . ϕ(xn)] =

∫
dx ⟨∂µTµνϕ(x1)ϕ(x2) . . . ϕ(xn)⟩ ϵν(x)

Hence,

∂

∂xµ
⟨Tµν(x)ϕ(x1)ϕ(x2) . . . ϕ(xn)⟩ = −i

N∑
i=1

δ(x− xi) ⟨ϕ(x1) . . . Gµ
i ϕ(xi) . . . ϕ(xn)⟩

Translation

The generator of Translation Pµ = −i∂µ is given as:

∂

∂xµ
⟨Tµν(x)ϕ(x1)ϕ(x2) . . . ϕ(xn)⟩ = −

N∑
i=1

δ(x− xi) ⟨ϕ(x1) . . . ∂µi ϕ(xi) . . . ϕ(xn)⟩

Rotation

The generator of Rotation is Jµν = i(xµ∂ν − xν∂µ) + Sµν and the associated conserved current is jµνρ =
Tµνxρ − Tµρxν .

∂

∂xµ
⟨jµνρ(x)ϕ(x1) . . . ϕ(xn)⟩ = −i

N∑
i=1

δ(x− xi) ⟨ϕ(x1) . . . Jνρ
i ϕ(xi) . . . ϕ(xn)⟩

∂

∂xµ
⟨(Tµνxρ − Tµρxν)ϕ(x1) . . . ϕ(xn)⟩ = −i

N∑
i=1

δ(x− xi) ⟨ϕ(x1) . . . [i(xν∂ρ − xρ∂ν) + Sνρ]iϕ(xi) . . . ϕ(xn)⟩

(((((((((((((
xρ

∂

∂xµ
⟨Tµνϕ(x1) . . . ϕ(xn)⟩+ δρµ ⟨Tµνϕ(x1) . . . ϕ(xn)⟩ −

(((((((((((((
xν

∂

∂xµ
⟨Tµρϕ(x1) . . . ϕ(xn)⟩ − δνµ ⟨Tµρϕ(x1) . . . ϕ(xn)⟩

= −i
N∑
i=1

δ(x− xi) ⟨ϕ(x1) . . . [����i(xν∂ρ −���xρ∂ν) + Sνρ]iϕ(xi) . . . ϕ(xn)⟩

⟨(T ρν − T νρ)ϕ(x1) . . . ϕ(xn)⟩ = −i
N∑
i=1

δ(x− xi) ⟨ϕ(x1) . . . Sνρ
i ϕ(xi) . . . ϕ(xn)⟩

Dilatation

The generator for Dilatation is D = x · ∂ and the associated conserved current is jµ = Tµ
ν x

ν .

S[ϕ] =

∫
d2xL(ϕA, ∂µϕA)

x′µ = (1 + ε)xµ, δxµ = εxµ, δ̄ϕA = −ε∆Aϕ
A

δtotϕ
A = δ̄ϕA + δxν∂νϕ

A

From Noether Theorem

jµ =
∂L

∂(∂µϕA)
δ̄ϕA − Tµ

ν δx
ν
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For dilatation, (ε factor suppressed)

jµD = −
∑
A

∆A
∂L

∂(∂µϕA)
ϕA − xνTµν

Let’s define V µ ≡ −∑A ∆A
∂L

∂(∂µϕA)
ϕA, then

jµD = V µ − xνTµν

∂µj
µ
D = ∂µV

µ − ∂µ(xνTµν)

= ∂µV
µ − Tµ

µ − xν∂µTµν

= ∂µV
µ + Tµ

µ (∂µT
µν = 0)

∂µj
µ
D = 0 ⇐⇒ Tµ

µ + ∂µV
µ = 0

The related Ward identity becomes:

∂µ ⟨Tµ
ν x

νϕ(x1) . . . ϕ(xn)⟩ = −
∑
i

δ(x− xi)
[
xνi

∂

∂xνi
⟨ϕ(x1) . . . ϕ(xn)⟩+∆i ⟨ϕ(x1) . . . ϕ(xn)⟩

]
which becomes 〈

Tµ
µ ϕ(x1) . . . ϕ(xn)

〉
= −

∑
i

δ(x− xi)∆i ⟨ϕ(x1) . . . ϕ(xn)⟩

3.6.1 In complex coordinates

We wish to rewrite these identities in terms of complex coordinates and complex components. But, we will first
derive the relevant identities for doing so. (

z
z̄

)
=

(
1 i
1 −i

)(
x0

x1

)
The metric in Euclidean space could be given as:

gµν =

(
1 0
0 1

)
In complex coordinates, it becomes:

gαβ =

(
1 i
1 −i

)(
1 0
0 1

)(
1 1
i −i

)
=

(
0 2
2 0

)
The anti-symmetric levi civita tensor in cartesian coordinates has the following form:

ϵµνcartesian =

(
0 1
−1 0

)
using the tensorial transformation law for the above coordinate transformation,

ϵαβ = Jα
µ ϵ

µν
cartesianJ

β
ν

=

(
1 i
1 −i

)(
0 1
−1 0

)(
1 1
i −i

)
=

(
0 −2i
2i 0

)
Lowering the indices:

ϵµν =

(
0 i

2−i
2 0

)
For the delta functions, we remind ourselves that it is not defined as:

δ(x) =

{
0 for x ̸= 0

∞ for x = 0
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But by the expression ∫
M

d2xδ(x)f(z) = f(0)

Any function which satisfies this property is a valid representation of delta function. The∞ of δ(x) at x = 0 in
the above mentioned representation is defined by the integral

∫∞
−∞ δ(x)dx = 1. For more detail refer to section

7.2 of the textbook Green’s function by G.F. Roach. It just so happens to be, that

δ(x) =
1

π
∂z

1

z̄
=

1

π
∂z̄

1

z

satisfies the required property. This identity is justified as follows. We consider a vector Fµ whose divergence
is integrated within a region M of the complex plane bounded by the contour ∂M . Gauss’s theorem may be
applied: ∫

M

d2x ∂µF
µ =

∫
∂M

dξµ F
µ (3.6)

where dξµ is an outward-directed differential of circumference, orthogonal to the boundary ∂M of the domain
of integration. It is more convenient to use a counterclockwise differential dsρ, parallel to the contour ∂M :
dξµ = ϵµρds

ρ. In terms of complex coordinates, the above surface integral is nothing but a contour integral,
where the (anti)holomorphic component of dsρ is dz (dz̄):

∫
M

d2x ∂µF
µ =

∫
∂M

dsσϵσµF
µ (3.7)

=

∫
∂M

(
dz ϵzz̄F

z̄ + dz̄ ϵz̄zF
z
)

=
i

2

∫
∂M

(
−dz F z̄ + dz̄ F z

)
(3.8)

Here the contour ∂M circles counterclockwise. If F z̄ (F z) is holomorphic (antiholomorphic), then Cauchy’s
theorem may be applied; otherwise the contour ∂M must stay fixed. We consider then a holomorphic function
f(z) and check the correctness of the first representation in Eq. (5.33) by integrating it against f(z) within a
neighborhood M of the origin:

∫
M

d2x δ(x)f(z) =
1

π

∫
M

d2x f(z) ∂z̄
1

z

=
1

π

∫
M

d2x ∂z̄

(
f(z)

z

)
=

1

2πi

∫
∂M

dz
f(z)

z

= f(0) (3.9)

In the second equation we have used the assumption that f(z) is analytic within M , and in the third equation
we have used the form (3.7) of Gauss’s theorem with F z̄ = f(z)/πz and F z = 0, and in the last equation we
used Cauchy’s residue theorem. Since the original ward identity was covariant, we now only need the following
object to write the Ward identities in complex coordinates:

∂µ ⟨Tµ
z ϕ(z1) . . . ϕ(zn)⟩ = gαβ∂α ⟨Tβzϕ(z1) . . . ϕ(zn)⟩ = 2∂z ⟨Tz̄zϕ(z1) . . . ϕ(zn)⟩+ 2∂z̄ ⟨Tzzϕ(z1) . . . ϕ(zn)⟩

∂µ ⟨Tµ
z̄ ϕ(z1) . . . ϕ(zn)⟩ = gαβ∂α ⟨Tβz̄ϕ(z1) . . . ϕ(zn)⟩ = 2∂z ⟨Tz̄z̄ϕ(z1) . . . ϕ(zn)⟩+ 2∂z̄ ⟨Tzz̄ϕ(z1) . . . ϕ(zn)⟩〈
Tµ
µ ϕ(z1) . . . ϕ(zn)

〉
= gαβ ⟨Tαβϕ(z1) . . . ϕ(zn)⟩ = 2 ⟨Tzz̄ϕ(z1) . . . ϕ(zn)⟩+ 2 ⟨Tz̄zϕ(z1) . . . ϕ(zn)⟩

ϵµν ⟨Tµνϕ(z1) . . . ϕ(zn)⟩ = ϵαβ ⟨Tαβϕ(z1) . . . ϕ(zn)⟩ = −2 ⟨Tzz̄ϕ(z1) . . . ϕ(zn)⟩+ 2 ⟨Tz̄zϕ(z1) . . . ϕ(zn)⟩

The Ward identities are then explicitly written as:

2π∂z ⟨Tz̄zϕ(z1) . . . ϕ(zn)⟩+ 2π∂z̄ ⟨Tzzϕ(z1) . . . ϕ(zn)⟩ = −
∑
i

∂z̄
1

z − wi
∂wi
⟨ϕ(z1) . . . ϕ(wi) . . . ϕ(zn)⟩

2π∂z ⟨Tz̄z̄ϕ(z1) . . . ϕ(zn)⟩+ 2π∂z̄ ⟨Tzz̄ϕ(z1) . . . ϕ(zn)⟩ = −
∑
i

∂z
1

z̄ − z̄i
∂z̄i ⟨ϕ(z1) . . . ϕ(wi) . . . ϕ(zn)⟩
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2 ⟨Tzz̄ϕ(z1) . . . ϕ(zn)⟩+ 2 ⟨Tz̄zϕ(z1) . . . ϕ(zn)⟩ = −
N∑
i=1

δ(z − wi)∆i ⟨ϕ(z1) . . . . . . ϕ(zn)⟩

−2 ⟨Tzz̄ϕ(z1) . . . ϕ(zn)⟩+ 2 ⟨Tz̄zϕ(z1) . . . ϕ(zn)⟩ = −
N∑
i=1

δ(z − wi)si ⟨ϕ(z1) . . . . . . ϕ(zn)⟩

Adding and subtracting the last two expressions,

2 ⟨Tz̄zϕ(z1) . . . ϕ(zn)⟩ = −
N∑
i=1

δ(z − wi)
∆i + si

2
⟨ϕ(z1) . . . . . . ϕ(zn)⟩

2π ⟨Tz̄zϕ(z1) . . . ϕ(zn)⟩ = −
∑
i

∂z̄
1

z − wi
hi ⟨ϕ(z1) . . . ϕ(zn)⟩ (3.10)

2 ⟨Tzz̄ϕ(z1) . . . ϕ(zn)⟩ = −
N∑
i=1

δ(z − wi)
∆i − si

2
⟨ϕ(z1) . . . . . . ϕ(zn)⟩

2π ⟨Tzz̄ϕ(z1) . . . ϕ(zn)⟩ = −
∑
i

∂z
1

z̄ − w̄i
h̄i ⟨ϕ(z1) . . . ϕ(zn)⟩ (3.11)

Inserting these relations in the first two Ward identities:

∂z̄

{
⟨T (z, z̄)ϕ(z1) . . . ϕ(zn)⟩ −

n∑
i=1

[
1

z − wi
∂wi
⟨ϕ(z1) . . . ϕ(zn)⟩+

hi
(z − wi)2

⟨ϕ(z1) . . . ϕ(zn)⟩
]}

= 0 (3.12)

∂z

{
⟨T̄ (z, z̄)ϕ(z1) . . . ϕ(zn)⟩ −

n∑
i=1

[
1

z̄ − w̄i
∂w̄i
⟨ϕ(z1) . . . ϕ(zn)⟩+

h̄i
(z̄ − w̄i)2

⟨ϕ(z1) . . . ϕ(zn)⟩
]}

= 0 (3.13)

where we have introduced a renormalized energy-momentum tensor

T = −2πTzz, T̄ = −2πTz̄z̄. (3.14)

Thus the expressions between braces in (3.12) and ((3.13)) are respectively holomorphic and antiholomorphic;
we may write

⟨T (z)ϕ(z1) . . . ϕ(zn)⟩ =
n∑

i=1

{
1

z − wi
∂wi
⟨ϕ(z1) . . . ϕ(zn)⟩+

hi
(z − wi)2

⟨ϕ(z1) . . . ϕ(zn)⟩
}
+ reg. (3.15)

where “reg.” stands for a holomorphic function of z, regular at z = wi. There is a similar expression for the
antiholomorphic counterpart. The Ward identity shows that the correlator of the field T (z) with primary fields
ϕ(wi, w̄i) becomes singular as z approaches the points wi. The OPE of the energy-momentum tensor with
primary fields is written simply by removing the brackets ⟨. . .⟩, it being understood that OPE is meaningful
only within correlation functions.

3.7 Free Fields and Operator Product Expansion

The operator product expansion, or OPE, is the representation of a product of operators (at positions z and w,
respectively) by a sum of terms, each being a single operator, well-defined as z → w, multiplied by a c-number
function of z−w, possibly diverging as z → w, and which embodies the infinite fluctuations as the two positions
tend toward each other. For a single primary field ϕ of conformal dimension h and h̄, we have the OPE from
Ward identity as:

T (z)ϕ(w, w̄) ∼ h

(z − w)2ϕ(w, w̄) +
1

z − w∂wϕ(w, w̄)

T (z̄)ϕ(w, w̄) ∼ h̄

(z̄ − z̄)2ϕ(w, w̄) +
1

z̄ − w̄ ∂w̄ϕ(w, w̄) (3.16)

whenever appearing in OPEs, the symbol ∼ will mean equality modulo expressions regular as z → w. Of
course, the OPE contains also an infinite number of regular terms which, for the Energy Momentum tensor,
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can not be obtained from the conformal ward identity. In general, we would write the OPE of two fields A(z)
and B(w) as

A(z)B(w) =

∞∑
n=−∞

{AB}n(w)
(z − w)n

where the composite {AB}n(w) are non singular at z = w. For instance, {Tϕ}1 = ∂wϕ(w). We stress that
so far, quantities appearing in (3.16) are not operators but simply fields occuring within correlation functions.
We will now proceed with specific examples, in order to familiarize ourselves with basic techniques and with
simple but important systems.

The Free Boson

From the point of view of the canonical or path integral formalism, the simplest conformal field theory is that
of a free massless boson ϕ, with the following action:

S =
1

2
g

∫
d2x∂µϕ∂

µϕ

where g is some normalization parameter that we leave unspecified at the moment. The two-point function, or
propagator can be found by comparing with

S =
1

2

∫
ddxddy ϕ(x)A(x, y)ϕ(y)

we have
A(x, y) = −gδ(2)(x− y)□ , (3.17)

We can calculate the two-point function K(x, y) ≡ ⟨φ(x1)φ(x2)⟩ = A−1 by solving the following equation:∫
d2uA(x, u)K(u, y) = δ(2)(x− y)

−
∫
d2ugδ(2)(x− u)□K(u, y) = δ(2)(x− y)

−g□K(x, y) = δ(2)(x− y) ,

Because of rotation and translation invariance, the propagator K(x, y) should depend only on the distance
separating the two points. Thus, we can write K(x, y) ≡ K(ρ) with ρ = |x− y|, and integrate over x within a
disk of radius ρ around y. We find

1 = 2πg

∫ r

0

dρρ

(
− 1

ρ

∂

∂ρ
(ρK ′(ρ))

)
= 2πg(−rK ′(r))

The solution of the two-point function for massless free boson can be obtained up to an additive constant,

⟨ϕ(x)ϕ(y)⟩ = − 1

4πg
ln(x− y)2 + const (3.18)

In terms of complex coordinates, this is

⟨ϕ(z, z̄)ϕ(w, w̄)⟩ = − 1

4πg
{ln(z − w) + ln(z̄ − w̄)}+ const

The holomorphic and anti-holomorphic components can be separated by taking the derivatives ∂ϕ and ∂̄ϕ:

⟨∂zϕ(z, z̄)∂wϕ(w, w̄)⟩ = −
1

4πg
∂w∂z{ln(z − w)}

= − 1

4πg
∂w

1

z − w = − 1

4πg

1

(z − w)2

⟨∂z̄ϕ(z, z̄)∂w̄ϕ(w, w̄)⟩ = −
1

4πg
∂w̄∂z̄{ln(z̄ − w̄)}

= − 1

4πg
∂w̄

1

z̄ − w̄ = − 1

4πg

1

(z̄ − w̄)2
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In the following, we will focus on holomorphic field ∂ϕ ≡ ∂zϕ.

Tµν = g

[
∂µϕ∂νϕ−

1

2
ηµν∂ρϕ∂

ρϕ

]
= g∂µϕ∂νϕ−

g

2
ηµνη

αβ∂αϕ∂βϕ

= g∂µϕ∂νϕ−
g

2
ηµν × 2ηzz̄∂zϕ ∂z̄ϕ︸︷︷︸

=0

= g∂µϕ∂νϕ

Then,
T (z) = −2πTzz = −2πg : ∂ϕ∂ϕ : and T̄ (z̄) = 0

Like all composite field, the energy momentum tensor has to be normal ordered, in order to ensure the vanishing
of its vacuum expectation value. More explicitly, the exact meaning of above expression is

T (z) = −2πg lim
w→z

[∂ϕ(z)∂ϕ(w)− ⟨∂ϕ(z)∂ϕ(w)⟩]

The OPE of T (z) with ∂ϕ may be calculated from Wick’s theorem:1

T (z)∂ϕ(w) = −2πg : ∂ϕ(z)∂ϕ(z) : ∂ϕ(w)

∼ −2πg : ∂ϕ(z)∂ϕ(z) : ∂ϕ(w)− 2πg : ∂ϕ(z)∂ϕ(z) : ∂ϕ(w)

∼ ∂ϕ(z)

(z − w)2

By expanding ϕ(z) around w, we arrive at the OPE

T (z)∂ϕ(w) ∼ ∂ϕ(w)

(z − w)2 +
∂2wϕ(w)

(z − w)
This shows that ∂ϕ is a primary field with conformal dimension h = 1. Wick’s theorem also allows us to
calculate the OPE of energy-momentum tensor with itself:

T (z)T (w) = 4π2g2 : ∂ϕ(z)∂ϕ(z) :: ∂ϕ(w)∂ϕ(w) :

∼ 4π2g2 : ∂ϕ(z)∂ϕ(z) :: ∂ϕ(w)∂ϕ(w) : + 4π2g2 : ∂ϕ(z)∂ϕ(z) :: ∂ϕ(w)∂ϕ(w) :

+ 4π2g2 : ∂ϕ(z)∂ϕ(z) :: ∂ϕ(w)∂ϕ(w) : + 4π2g2 : ∂ϕ(z)∂ϕ(z) :: ∂ϕ(w)∂ϕ(w) :

+ 4π2g2 : ∂ϕ(z)∂ϕ(z) :: ∂ϕ(w)∂ϕ(w) : + 4π2g2 : ∂ϕ(z)∂ϕ(z) :: ∂ϕ(w)∂ϕ(w) :

∼ 8π2g2 : ∂ϕ(z)∂ϕ(z) :: ∂ϕ(w)∂ϕ(w) : + 16π2g2 : ∂ϕ(z)∂ϕ(z) :: ∂ϕ(w)∂ϕ(w) :

∼
1/2

(z − w)4 −
4πg : ∂ϕ(z)∂ϕ(w) :

(z − w)2

Expanding ϕ(z) around w, we arrive at the OPE

∼
1/2

(z − w)4 −
4πg : ∂ϕ(w)∂ϕ(w) :

(z − w)2 − 4πg : ∂2ϕ(w)∂ϕ(w) :

(z − w)

∼
1/2

(z − w)4 +
2T (w)

(z − w)2 +
∂T (w)

(z − w)
We immediately see that the energy momentum tensor is not strictly a primary field, because of the anomalous
term 1/2(z−w)4 which does not appear in (3.16).

Free Fermion

Now we consider another simple model: free fermion. In two dimensions, the action of a free Majorana fermion
is

S =
1

2
g

∫
d2xΨ†γ0γµ∂µΨ , (3.19)

1Since we are Wick contracting the normal ordered product of operators, the only term that it will give rise to are cross-
contractions, since the wick contraction of operators which are already normal ordered vanishes.
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where the gamma matrices γµ satisfy the so-called Clifford algebra:

{γµ, γν} = 2ηµν , (3.20)

and we impose the Majorana condition (Ψ∗ = Ψ) to the fermionic field to remove a half of the degrees of
freedom. In the Euclidean space ηµν = diag(1, 1), we take a basis of Dirac matrices as

γ0 =

(
0 1
1 0

)
, γ1 = i

(
0 −1
1 0

)
. (3.21)

and therefore,

γ0γµ∂µ = γ0(γ0∂0 + γ1∂1)

=

(
0 1
1 0

)[(
0 1
1 0

)
∂ + i

(
0 −1
1 0

)
∂̄

]
=

(
0 1
1 0

)(
0 ∂0 − i∂1

∂0 + i∂1 0

)
=

(
0 1
1 0

)(
0 2∂z
2∂z̄ 0

)
= 2

(
∂̄ 0
0 ∂

)
Using this basis, we can express the action as

S = g

∫
d2x(ψ∂ψ + ψ∂ψ) , (3.22)

where we write the two-component spinor Ψ as (ψ,ψ). Since the equations of motion are ∂ψ̄ = 0 and ∂ψ = 0,
ψ(z) and ψ(z) holomorphic and antiholomorphic field, respectively.

Now let us calculate the two-point function as in the free fermion

Kij = ⟨Ψi(x)Ψj(y)⟩ (i, j = 1, 2) . (3.23)

The action can be expressed by

S =
1

2

∫
d2xd2yΨi(x)Aij(x, y)Ψj(y) , (3.24)

where the kernel is
Aij(x, y) = gδ(x− y)(γ0γµ)ij∂µ . (3.25)

Recalling that propagator Kij is the inverse of Aij . Therefore, we can write the equation for K as∫
d2uA(x, u)K(u, y) = δ(2)(x− y)

g

∫
d2uδ(2)(x− u)(γ0γµ)ij

∂

∂xµ
K(u, y) = δ(2)(x− y)δij

g(γ0γµ)ik
∂

∂xµ
Kkj(x, y) = δ(x− y)δij .

In terms of complex coordinates, this becomes

2g

(
∂ 0
0 ∂

)(
⟨ψ(z, z)ψ(w,w)⟩ ⟨ψ(z, z)ψ(w,w)⟩
⟨ψ(z, z)ψ(w,w)) ⟨ψ(z, z)ψ(w,w)⟩

)
=

1

π

(
∂ 1

z−w 0

0 ∂ 1
z−w

)
, (3.26)

where we have used the complex form of the δ-function:

δ(x) =
1

π
∂
1

z
=

1

π
∂
1

z
.

Therefore, we obtain the two-point functions for the fermionic fields

⟨ψ(z, z)ψ(w,w)⟩ = 1

2πg

1

z − w ,

⟨ψ(z, z)ψ(w,w)⟩ = 1

2πg

1

z − w ,
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⟨ψ(z, z)ψ(w,w)⟩ = 0

These, after differentiation, imply

⟨∂zψ(z, z̄)ψ(w, w̄)⟩ = −
1

2πg

1

(z − w)2

⟨∂zψ(z, z̄)∂wψ(w, w̄)⟩ = −
1

πg

1

(z − w)3

Thus the OPE of two holomorphic fields can be written as:

ψ(z)ψ(w) ∼ 1

2πg

1

z − w (3.27)

In order to see whether the fermion field is a primary field or not, we can calculate its OPE with the energy-
momentum tensor. By using (??) in complex-coordinate form, we can calculate all the components of the
energy-momentum tensor.

T zz =
∂L

∂(∂z̄Φ)
∂z̄Φ = gz̄z

∂L
∂(∂̄Φ)

∂Φ = 2
∂L

∂(∂Φ)
∂Φ = 2gψ∂ψ ,

T zz =
∂L

∂(∂zΦ)
∂zΦ = gzz̄

∂L
∂(∂Φ)

∂Φ = 2
∂L

∂(∂Φ)
∂Φ = 2gψ∂ψ ,

T zz =
∂L

∂(∂zΦ)
∂z̄Φ− gzz̄L = 2

∂L
∂(∂Φ)

∂Φ− 2L = −2gψ∂ψ .

The traceless condition T zz is preserved when taking into account the equation of motion, as we have discussed.
The holomorphic part is defined as:

T (z) = −πg : ψ(z)∂ψ(z) : . (3.28)

The normal-ordering product can be written in an equivalent way for the free field as follow:

: ψ∂ψ : (z) = lim
w→z

(ψ(z)∂ψ(w)− ⟨ψ(z)∂ψ(w)⟩) , (3.29)

which is the same expression as in bosonic field theory. Then we can calculate the OPE between the fermion
field and energy-momentum tensor directly.

T (z)ψ(w) = −πg : ψ(z)∂ψ(z) : ψ(w)

= −πg : ψ(z)∂ψ(z) : ψ(w)− πg : ψ(z)∂ψ(z) : ψ(w)

∼ 1

2

ψ(z)

(z − w)2 +
1

2

∂ψ(z)

(z − w)

∼
1
2ψ(w)

(z − w)2 +
∂ψ(w)

z − w

In contracting ψ(z) with ψ(w) we have carried ψ(w) over ∂ψ(z), thus introducing a (−) sign by Pauli’s principle.
The OPE immediately tells us that in the free fermion model, ψ is a primary field with conformal dimension
1/2. TT OPE in this model can also be obtained directly by calculation.

T (z)T (w) ∼ 1/4

(z − w)4 +
2T (w)

(z − w)2 +
∂T (w)

(z − w) . (3.30)

The Ghost System

In string theory applications, there appears another simple system, with the following action:

S =
1

2
g

∫
d2xbµν∂

µcν

where bµν is a traceless symmetric tensor, and where both cµ and bµν are fermions (anti-commuting fields).
These fields are called ghosts because they are not fundamental dynamical fields, but rather represent a ja-
cobian arising from a change of variables in some functional integrals. More precisely, they are known as
reparametrization ghosts. The role of these ghost fields is to cancel the unphysical gauge degrees of freedom.

The equation of motion are

∂αbαµ = 0 and ∂αcβ + ∂βcα = 0
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In holomorphic form we write c = cz and c̄ = cz̄. The only nonzero components of the traceless symmetric
tensor bµν are b = bzz and b̄ = bz̄z̄. The equations of motion are then

∂̄b = 0 ∂b̄ = 0

∂̄c = 0 ∂c̄ = 0 ∂c = −∂̄c̄

The propagator is calculated in the usual way, by writing the action as:

S =
1

2

∫
d2xd2ybµν(x)A

µν
α cα(y)

Aµν
α =

1

2
gδναδ(x− y)∂µ

where we must consider (µ, ν) as a single composite index, symmetric under the exchange of µ and ν. The
factor of 1

2 in front of Aµν
α compensates the double counting of each pair (µ, ν) in the sum, which should be

avoided since bµν is the same degree of freedom as bνµ. Again the propagator is K = A−1, satisfying

1

2
gδµα∂

νKβ
µν(x, y) = δ(x− y)δαβ

or, in complex representation

g∂z̄K
β
zz =

1

π
∂z̄

1

z − wδβz

which implies

⟨b(z)c(w)⟩ = Kz
zz(z, w) =

1

πg

1

z − w
In OPE form, this is

b(z)c(w) ∼ 1

πg

1

z − w
from which we immediately derive

⟨c(z)b(w)⟩ = −⟨b(w)c(z)⟩ = 1

πg

1

z − w

⟨b(z)∂wc(w)⟩ = −⟨∂zc(z)b(w)⟩ = ∂w

(
1

πg

1

z − w

)
=

1

πg

1

(z − w)2

⟨∂zb(z)c(w)⟩ = −
1

πg

1

(z − w)2

⟨∂zb(z)∂wc(w)⟩ = −
2

πg

1

(z − w)3

The canonical energy-momentum tensor for this system is

Tµν
B =

1

2
g
[
bµα∂νcα − ηµνbαβ∂αcβ

]
The Belinfante tensor is

Tµν
B =

1

2
g
[
bµα∂νcα + bνα∂µcα + ∂αb

µνcα − ηµνbαβ∂αcβ
]

The normal ordered holomorphic component is obtained from the above by setting µ = ν = 1, that is, by
considering T z̄z̄ = 4Tzz:

T (z) = πg : (2∂c b+ c∂b) :

The OPE for this stress energy tensor with c is again calculated using Wick’s theorem:

T (z)c(w) = πg : (2∂c b+ c∂b) : c(w)

= πg : 2∂c b : c(w) + πg : c∂b : c(w)

∼ 2∂zc(z)

z − w − c(z)

(z − w)2

∼ 2∂wc(w)

z − w − c(w) + (z − w)∂wc(w)
(z − w)2
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∼ ∂wc(w)

z − w − c(w)

(z − w)2

T (z)b(w) = πg : (2∂c b+ c∂b) : b(w)

= −πg : 2b∂c : b(w)− πg : ∂b c : b(w)

∼ 2b(z)

(z − w)2 −
∂zb(z)

(z − w)

∼ 2b(w)

(z − w)2 +
∂wb(w)

(z − w)

One must be careful because b and c are anticommuting so that interchange of fields flips the sign: one should
anticommute the fields being paired until they are next to each other before doing the Wick contraction. The
OPE of T with itself, may contain more terms, which add up to following:

T (z)T (w) = π2g2 : (2∂c(z) b(z) + c(z)∂b(z)) :: (2∂c(w) b(w) + c(w)∂b(w)) :

= π2g2 : 2∂c(z) b(z) :: (2∂c(w) b(w) + c(w)∂b(w)) : +π2g2 : c(z)∂b(z) :: (2∂c(w) b(w) + c(w)∂b(w)) :

= 4π2g2 : ∂c(z) b(z) :: ∂c(w) b(w) : +2π2g : ∂c(z) b(z) :: c(w)∂b(w) : +2π2g2 : c(z)∂b(z) :: ∂c(w) b(w) :

+ π2g2 : c(z)∂b(z) :: c(w)∂b(w) :

= 4π2g2 : ∂c(z) b(z) :: ∂c(w) b(w) : + 4π2g2 : ∂c(z) b(z) :: ∂c(w) b(w) : + 4π2g2 : ∂c(z) b(z) :: ∂c(w) b(w) :

+ 2π2g : ∂c(z) b(z) :: c(w)∂b(w) : + 2π2g : ∂c(z) b(z) :: c(w)∂b(w) : + 2π2g : ∂c(z) b(z) :: c(w)∂b(w) :

+ 2π2g2 : c(z)∂b(z) :: ∂c(w) b(w) : + 2π2g2 : c(z)∂b(z) :: ∂c(w) b(w) : + 2π2g2 : c(z)∂b(z) :: ∂c(w) b(w) :

+ π2g2 : c(z)∂b(z) :: c(w)∂b(w) : + π2g2 : c(z)∂b(z) :: c(w)∂b(w) : + π2g2 : c(z)∂b(z) :: c(w)∂b(w) :

The end result is

T (z)T (w) =
−4

(z − w)4 +
4πg : ∂c(z)b(w) :

(z − w)2 − 4πg : b(z)∂c(w) :

(z − w)2 − 4

(z − w)4 +
2πg : ∂c(z)∂b(w) :

z − w − 4πg : b(z)c(w) :

(z − w)3

− 4

(z − w)4 −
4πg : c(z)b(w) :

(z − w)3 +
2πg : ∂b(z)∂c(w) :

z − w − 1

(z − w)4 −
πg : c(z)∂b(w) :

(z − w)2 +
πg : ∂b(z)c(w) :

(z − w)2 + . . .

After some Taylor expansions to turn f(z) functions into f(w) functions, together with a little collecting of
terms, this can be written as,

T (z)T (w) =
−13

(z − w)4 +
2T (w)

(z − w)2 +
∂T (w)

z − w + . . .

3.8 Central Charge

The specific models treated in the last section lead us naturally to the following general OPE of the energy-
momentum tensor.

T (z)T (w) ∼ c/2

(z − w)4 +
2T (w)

(z − w)2 +
∂T (w)

(z − w)
where the constant c, not to be confused with ghost field cµ, depends on the specific model under study: it
is equal to 1 for the free boson, 1/2 for the free fermion, −26 for the reparametrization ghosts, and −2 for
the simple ghost system. This model dependent constant term is called the central charge. Except for this
anomalous term, the OPE simply means that T is a quasi-primary field with conformal dimension h = 2.

The central charge may not be determined from symmetry considerations: its value is determined by the
short-distance behavior of the theory. For free fields, as seen in the previous section, it is determined by
applying Wick’s theorem on the normal-ordered energy-momentum tensor. When two decoupled systems (e.g.,
two free fields) are put together, the energy-momentum tensor of the total system is simply the sum of the
energy-momentum tensors associated with each part, and the associated central charge is simply the sum of
the central charges of the parts. Thus, the central charge is somehow an extensive measure of the number of
degrees of freedom of the system.
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Transformation of the Energy-Momentum Tensor

The departure of OPE from the general form (3.16) means that the energy-momentum tensor does not exactly
transform like a primary field of dimension 2, contrary to what we expect classically. This happens because
the normal ordering is not invariant under conformal transformation. According to conformal ward identity

δϵT (w) = −
1

2πi

∮
C

dzϵ(z)T (z)T (w)

= − 1

2πi

∮
C

dzϵ(z)

[
c/2

(z − w)4 +
2T (w)

(z − w)2 +
∂T (w)

(z − w) + reg.

]
= −c/2

3!
∂3wϵ(w)− 2T (w)∂wϵ(w)− ϵ(w)∂wT (w)

In the third equation, we used Cauchy’s integral formula for derivatives. The “exponentiation” of this infinites-
imal variation to a finite transformation z → w(z) is:

T ′(w) =

(
dw

dz

)−2 [
T (z)− c

12
{w; z}

]
(3.31)

where we have introduced the Schwarzian derivative:

{w; z} =
d3w
dz3

dw
dz

− 3

2

(
d2w
dz2

dw
dz

)2

Instead of giving the long and technical proof of the last statement, we shall derive the above for free boson
system. We write the free boson energy-momentum tensor as

T (z) = −2πg lim
δ→0

: ∂ϕ∂ϕ := −2πg lim
δ→0

[
∂ϕ

(
z +

1

2
δ

)
∂ϕ

(
z − 1

2
δ

)
+

1

4πδ2

]
Consider the transformation z → w(z). Since ϕ has conformal dimension zero ∂ϕ transforms as

∂zϕ =
∂w

∂z

∂ϕ′(z)
∂w

= w(1)∂wϕ
′(w)

(here we denote the n-th derivative of w by w(n) in order to lighten the notation). Hence T (z) transforms as:

T (z) = −2πg lim
δ→0

[
w(1)

(
z +

1

2
δ

)
w(1)

(
z − 1

2
δ

)
∂wϕ

′
(
w

(
z − 1

2
δ

))
∂wϕ

′
(
w

(
z +

1

2
δ

))
+

1

4πδ2

]
(3.32)

we will use the following to simplify the above:

w(z + δ/2) ≃ w(z) + δ

2
∂zw(z) +

1

2!

(δ
2

)2
∂2zw(z) +

1

3!

(δ
2

)3
∂3zw(z) + . . .

∂zw(z + δ/2) ≃ ∂zw(z) +
δ

2
∂2zw(z) +

1

2!

(δ
2

)2
∂3zw(z) + . . .[

w(z + δ/2)− w(z − δ/2)
]2

=
(
∂zw(z)

)2
δ2 +

1

12

(
∂3zw ∂zw(z)

)
δ4 +O(δ6),

= (w(1)δ)2
[
1 +

1

12

w(3)

w(1)
δ2 + . . .

]
so the inverse is then,

1

[w(z + δ/2)− w(z − δ/2)]2 =
1

δ2
1

(∂zw(z))2
− 1

12

∂3zw(z)

(∂zw(z))3
+O(δ2) (3.33)

∂zw(z + δ/2)∂zw(z − δ/2) =
[
∂zw(z) +

δ

2
∂2zw(z) +

1

2!

(δ
2

)2
∂3zw(z) + . . .

] [
∂zw(z)−

δ

2
∂2zw(z) +

1

2!

(δ
2

)2
∂3zw(z) + . . .

]
= (w(1))2 −

(
δ

2

)2

(w(2))2 +

(
δ

2

)2

w(1)w(3) + . . . (3.34)
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Then,

T (z) = lim
δ→0

[
w(1)

(
z +

1

2
δ

)
w(1)

(
z − 1

2
δ

){
−2πg : ∂wϕ

′(w)∂wϕ
′(w) : +

1

2
[
w
(
z + δ

2

)
− w

(
z − δ

2

)]2
}
− 1

2δ2

]

= (w(1)(z))2T ′(w) + lim
δ→0

[
w(1)

(
z + δ

2

)
w(1)

(
z − δ

2

)
2
[
w
(
z + δ

2

)
− w

(
z + δ

2

)]2 − 1

2δ2

]
= (w(1)(z))2T ′(w)

+ lim
δ→0

[{
(w(1))2 −

(
δ

2

)2

(w(2))2 +

(
δ

2

)2

w(1)w(3) + . . .

}{
1

2δ2
1

(w(1))2
− 1

24

w(3)

(w(1))3
+ . . .

}
− 1

2δ2

]
= (w(1)(z))2T ′(w) + lim

δ→0

[
�
��1

2δ2
− 1

8

(
w(2)

w(1)

)2

− 1

24

w(3)

w(1)
+

1

8

w(3)

w(1)
+ . . .−

�
��1

2δ2

]
= (w(1)(z))2T ′(w) +

1

12

[
w(3)

w(1)
− 3

2

(
w(2)

w(1)

)2
]

Here we use (3.33) and (3.34) in the second step for simplication. There is another way to look at this derivation
which sheds light on the origin of schwarzian derivative term. Let us focus on how the propagator transforms
under conformal transformation:

⟨ϕ(w(z1))ϕ(w(z2))⟩ = − ln
∣∣w(z1)− w(z2)∣∣2

= − ln
∣∣z12w(z1)− w(z2)

z1 − z2
∣∣2

= − ln |z12|2 − ln

∣∣∣∣w(z1)− w(z2)z12

∣∣∣∣2
= ⟨ϕ(z1)ϕ(z2)⟩ − ln

∣∣∣∣w(z1)− w(z2)z12

∣∣∣∣2

Let us write w1 ≡ w(z1) and w2 ≡ w(z2). One can show that for |z12| = |z1 − z2| small:

∂z1∂z2 ln

∣∣∣∣w(z1)− w(z2)z12

∣∣∣∣ = ∂z1∂z2 ln |w(z1)− w(z2)|2 − ∂z1∂z2 ln |z12|2

= ∂z1

[ −w(1)(z2)

w(z1)− w(z2)

]
− 1

z212

=
w(1)(z2)w

(1)(z1)

(w(z1)− w(z2))2
− 1

z212

=
2

12

[
∂3z2w2

∂z2w2
− 3

2

(∂2z2w2

∂z2w2

)2]
+O(z12).

Since only the z12 → 0 limit is of interest we can drop all terms on the right-hand side that vanish in this limit.
Substituting the result of this into the above we learn that:

lim
z1→z2

∂z1∂z2 ⟨ϕ(w(z1))ϕ(w(z2))⟩ = lim
z1→z2

∂z1∂z2 ⟨ϕ(z1)ϕ(z2)⟩ −
2

12

[
∂3z2w2

∂z2w2
− 3

2

(∂2z2w2

∂z2w2

)2]

The non-invariance of the vacuum and thus correlator is really what opens up the possibility of a trace anomaly
⟨U−1T (w)U⟩ ≡ ⟨T ′(w)⟩ ̸= 0 and it is not at all coincidental. The conformal transformations which do change
the vacuum are those that have non-vanishing Schwarzian derivative, and thus an extra inhomogeneous central
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charge term. Using this we can derive the transformation law for energy-momentum tensor:

T (w)(z2) ≡ : lim
z1→z2

[
− 1

2
∂z1ϕ(z1)∂z2ϕ(z2)

]
:w

= lim
z1→z2

[
− 1

2

(
∂z1ϕ(z1)∂z2ϕ(z2)− ∂z1∂z2 ⟨ϕ(w(z1))ϕ(w(z2))⟩

)]
= lim

z1→z2

{
− 1

2

(
∂z1ϕ(z1)∂z2ϕ(z2)− ∂z1∂z2 ⟨ϕ(z1)ϕ(z2)⟩+

2

12

[∂3z2w2

∂z2w2
− 3

2

(∂2z2w2

∂z2w2

)2])}
= lim

z1→z2

{
− 1

2

(
∂z1ϕ(z1)∂z2ϕ(z2)− ∂z1∂z2 ⟨ϕ(z1)ϕ(z2)⟩

)}
− 1

12

[∂3z2w2

∂z2w2
− 3

2

(∂2z2w2

∂z2w2

)2]
=: lim

z1→z2

[
− 1

2
∂z1ϕ(z1)∂z2ϕ(z2)

]
:z −

1

12

[∂3z2w2

∂z2w2
− 3

2

(∂2z2w2

∂z2w2

)2]
= T (z)(z2)−

1

12

[∂3z2w2

∂z2w2
− 3

2

(∂2z2w2

∂z2w2

)2]

(3.35)

where we noted in the last two lines that:

T (z)(z2) ≡ : lim
z1→z2

[
− 1

2
∂z1ϕ(z1)∂z2ϕ(z2)

]
:z

= lim
z1→z2

{
− 1

2

(
∂z1ϕ(z1)∂z2ϕ(z2)− ∂z1∂z2 ⟨ϕ(z1)ϕ(z2)⟩

)} (3.36)

as shown above. So we learn that a finite holomorphic change in normal ordering, z → w(z), with fixed
coordinates, z2, of the energy-momentum tensor is given by:

T (w)(z2) = T (z)(z2)−
1

12

[
∂3z2w2

∂z2w2
− 3

2

(∂2z2w2

∂z2w2

)2]
(3.37)
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Chapter 4

Operator Formalism

In the previous chapter, conformal symmetry was seen to impose constraints on correlation functions in the form
of Ward identities. These identities were conveniently expressed using operator product expansions between the
energy–momentum tensor and local fields, but the OPEs were understood only as a shorthand for singularities
inside correlators. Nothing required a Hilbert space or an operator formalism: in principle, everything could
have been computed directly in the path integral by evaluating Green’s functions and extracting their short-
distance behavior. Up to this point, all we really needed was a way to compute the two-point correlator, whether
by solving the Schwinger–Dyson equations or by brute-force path integration. The OPEs then followed from
the explicit Green’s function.

From here onward the viewpoint changes. Instead of relying on an explicit propagator, we will systematically
construct an operator formalism in which OPEs can be obtained directly from symmetry and representation
theory. This is a qualitatively new approach: even when the Green’s function is not accessible by solving
the equations of motion or performing the path integral, the operator method still allows us to determine the
structure of OPEs and, in turn, recover the correlators themselves.

The Hilbert space is what makes this possible. Once a Hilbert space is defined, local fields are no longer
only insertions in correlation functions — they correspond to states, and operators act as maps on this space.
This representation turns the OPE into an actual operator identity, rather than a mnemonic for propagator
singularities. The OPE then expresses how the action of one operator near another decomposes into the basis
of states, giving us algebraic control that was absent in the purely path-integral description.

To set this up, we must specify a notion of “time,” since operators evolve with respect to it. In Euclidean
space, the natural choice is to take the radial coordinate as time, leading to radial quantization. States are then
defined on concentric circles, time evolution is dilation, and contour integrals of the stress tensor implement
the Virasoro algebra. Within this framework, commutators appear as contour manipulations, and the OPE
becomes a universal computational tool, independent of explicit Green’s functions.

4.1 Radial quantization

In the operator formalism one must first distinguish a time direction from a space direction. In Minkowski
spacetime this choice is canonical, but in Euclidean space it is arbitrary. A Hilbert space by itself is just a
complete inner product space; what makes it physically meaningful is the specification of a time direction,
which singles out a Hamiltonian as the generator of time translations. The Hamiltonian defines a vacuum
state (its lowest-energy eigenstate) and organizes the remaining states as excitations built on top of it.

This structure underlies any quantum theory: begin with a vacuum, generate excitations, and classify states
by the Hamiltonian spectrum. In two-dimensional conformal field theory we can choose a different notion of
“time”: the radial direction from the origin. To motivate this further, consider Rd in spherical coordinates

ds2 = dr2 + r2dΩd−1 = r2
[
dr2

r2
+ dΩd−1

]
Now let t = log(r) so that

ds2 = e2t[dt2 + dΩd−1]

which is conformally related to the metric on R×Sd−1. Now if we consider a CFT on Rd, the theory should be
invariant under rescaling of metric, so studying that theory on Rd should be equivalent to studying the theory
on R× Sd−1.

From a Minkowski space point of view (in particular in the context of string theory), we will initially define
our theory on an infinite space-time cylinder, with time t going from −∞ to +∞ along the “flat” direction
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of the cylinder, and space being compactified with x going from 0 to L, and the point (0, t) and (L, t) being
identified. If we continue to Euclidian space, the cylinder is described by a single complex coordinate

w = t+ ix, x ∼ x+ L,

with Hamiltonian H = −i∂t. We can then consider the conformal map of this cylinder to the plane via

z = e
2π
L w.

Here t→ −∞ maps to z = 0, t→ +∞ to z =∞, and the compact x direction gives angular periodicity. A very
interesting feature of this map is that it takes circles of constant radius in R2 to constant t slices on R× S. As
a consequence, the dilatation operator on R2 which maps circles onto circles with different radius, corresponds
to time translation on R× S, so it behave as Hamiltonian.

t1 t2

t

x t1 t2

x

Figure 4.1: Conformal map from the cylinder to the complex plane.

Since periodicity in x is reflected in the periodicity of w and w̄. All operators on cylinder admit the following
expansion:

ϕ(w, w̄) =
∑

m,n∈Z
ϕn,me

−nwe−mw̄ (4.1)

where ϕn,m do not have any (w, w̄) dependence. Consider the transformation of primary field living on cylinder
to z−plane under the conformal mapping z = ew:

Φ(z, z̄) = (∂zw)
h(∂z̄w̄)

h̄Φ(w, w̄)

= z−hz̄−h̄
∑

m,n∈Z
ϕn,me

−nwe−mw̄

= z−hz̄−h̄
∑

m,n∈Z
ϕm,mz

−nz̄−m

=
∑
m,n

ϕn,mz
−n−hz̄−m−h̄

In free-field theories the vacuum is annihilated by positive-frequency modes; in interacting theories we assume
asymptotic fields behave freely, e.g.

ϕin ∝ lim
t→−∞

ϕ(x, t).

In radial quantization, this translates into

|ϕin⟩ = lim
z,z̄→0

ϕ(z, z̄) |0⟩ .

Expanding the operator in modes, we have

|ϕin⟩ = lim
z,z̄→0

∑
m,n

ϕn,m z−n−h z̄−m−h̄ |0⟩ .

For this expression to be non-singular as z → 0, the modes with negative powers of z and z̄ must annihilate
the vacuum. This requires

n+ h > 0 ⇒ n > −h, m+ h̄ > 0 ⇒ m > −h̄,



4.1. RADIAL QUANTIZATION 71

so that

ϕn,m |0⟩ = 0 for n > −h and m > −h̄.
Thus, only the non-negative powers contribute. For n+ h < 0 and m+ h̄ < 0, we have

lim
z,z̄→0

z−n−hz̄−m−h̄ |0⟩ = 0

The only non-trivial contribution comes from the modes with

n+ h = 0, m+ h̄ = 0,

yielding

|ϕin⟩ = ϕ−h,−h̄ |0⟩ .
Once the Hilbert space is tied to a vacuum and a Hamiltonian (here, the dilatation operator), operators
can be classified by scaling dimensions, excitations arranged systematically, and operator product expansions
formulated as exact operator identities—rather than being inferred indirectly from correlation functions.

The Hermitian product

On this Hilbert space we must also define a bilinear product, which we do indirectly by defining an asymptotic
“out” state, together with the action of Hermitian conjugation on conformal fields.

⟨ϕout| = |ϕin⟩† =
(

lim
z,z̄→0

ϕ(z, z̄) |0⟩
)†

In Minkowski space, Hermitian conjugation does not affect the space-time coordinates. Things are different in
Euclidian space, since the Euclidian time τ = it must be reversed (τ → −τ) upon Hermitian conjugation if t is
to be left unchanged. In radial quantization this corresponds to the mapping:

w ≡ eτ+ix → e−τ+ix

= e−(τ−ix) =
1

eτ+ix
=

1

z̄

Since ϕ is a primary field,

ϕ(z, z̄) =

(
∂w

∂z

)h(
∂w̄

∂z̄

)h̄

ϕ(w, w̄)

=

(
− 1

z2

)h(
− 1

z̄2

)h̄

ϕ(w, w̄)

= (−1)h(w2h)(−1)−h̄(w̄2h̄)ϕ(w, w̄)

= (−1)h+h̄w2hw̄2h̄ϕ(w, w̄)

ϕ(w, w̄) = (−1)h+h̄w−2hw̄−2h̄ϕ(z, z̄)

Since |ϕin⟩ were defined using lim
z→0

, so lim
w→0

could be used to define |ϕout⟩ state:

⟨ϕout| = lim
z,z̄→∞

⟨0|ϕ
(
1

z
,
1

z̄

)
= = lim

w,w̄→0
(−1)h+h̄w−2hw̄−2h̄ ⟨0|ϕ

(
1

w
,
1

w̄

)
relabelling w = z,

⟨ϕout| = lim
z,z̄→0

(−1)h+h̄z−2hz̄−2h̄ ⟨0|ϕ
(
1

z
,
1

z̄

)
The factor (−1)h+h̄ is coming due to spin, if we ignore that:

⟨ϕout| = lim
z,z̄→0

z−2hz̄−2h̄ ⟨0|ϕ
(
1

z
,
1

z̄

)
= lim

z,z̄→0
⟨0|ϕ(z, z̄)†

Hence, we conclude

ϕ(z, z̄)† = z−2hz̄−2h̄ϕ

(
1

z
,
1

z̄

)
(4.2)
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Or we could alternatively do Fourier expansion on the radial plane, the adjoint property then reads

Φ(z, z̄)† = z̄−2hz−2h̄Φ(1/z̄, 1/z)

= z̄−2hz−2h̄
∑
m,n

ϕn,m

(
1

z̄

)−n−h(
1

z

)−m−h̄

= z̄−2hz−2h̄
∑
m,n

ϕn,m(z̄)n+h(z)m+h̄

=
∑
m,n

ϕn,mz
m−h̄z̄n−h

∑
m,n

ϕ†n,m(z−n−hz̄−m−h̄) =
∑
m,n

ϕ−n,−mz
−m−h̄z̄−n−h =⇒ ϕ†n,m = ϕ−n,−m

The inner product is well defined as well:

⟨ϕout|ϕin⟩ = lim
z,z,w,w→0

z−2hz−2h ⟨0|ϕ(1/z, 1/z)ϕ(w,w) |0⟩

= lim
ξ,ξ→∞

ξ
2h
ξ2h ⟨0|ϕ(ξ, ξ)ϕ(0, 0) |0⟩

= lim
ξ,ξ→∞

ξ
2h
ξ2h

C12

ξ̄2hξ2h̄
= C12

Unless the prefactors in (4.2) were missing the limit would have been ill defined.

4.1.1 Radial Ordering

Within radial quantization, the time ordering that appears in the definition of correlation functions becomes a
radial ordering,

R(ϕ1(z)ϕ2(w)) =
{
ϕ1(z)ϕ2(w) |z| > |w| ,
ϕ2(w)ϕ1(z) |z| < |w| . (4.3)

As usual, we will always omit the radial-ordered operator in the correlation function as well as in the OPE
expansion. One consequence after specifying time direction is that we can relate OPE to commutation relations.
For this, let us consider the contour integral around w for two holomorphic fields a(z) and b(w). If the contour
is not radially ordered over the whole path, we can decompose it into contributions that are radially ordered:∮

w

dz a(z)b(w) =

∮
|z|>|w|

dz a(z)b(w)︸ ︷︷ ︸
radial ordering: z outside w

−
∮
|z|<|w|

dz b(w)a(z)︸ ︷︷ ︸
radial ordering: z inside w

= [A, b(w)] , (4.4)

where the operator A is the contour integral of a(z) at a fixed time

A =

∮
dz a(z) . (4.5)

Here we take the contours C1 and C2 at fixed-radius |w| + ϵ and |w| − ϵ with a small positive number ϵ as
illustrated in Figure 4.2 . Then, with B =

∮
dz b(z), we can generalize the relation (??) to

[A,B] =

∮
0

dw[A, b(w)] =

∮
0

dw

∮
w

dza(z)b(w) . (4.6)

4.2 Virasoro Algebra

4.2.1 Conformal Generators

The ward identity

δϵ ⟨ϕ1 . . . ϕn⟩ =
∫
M

d2x∂µ ⟨Tµνϵνϕ1 . . . ϕn⟩

could be expressed in complex coordinates using (3.7):

δϵ,ϵ̄ ⟨ϕ1 . . . ϕn⟩ =
i

2

∫
C

[
−dz

〈
T z̄z̄ϵz̄ϕ1 . . . ϕn

〉
+ dz̄ ⟨T zzϵzϕ1 . . . ϕn⟩

]
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Figure 4.2: Subtraction of contours

w

0 =

w

0

C1

−

w

0

C2

= − 1

2πi

∫
C

dz ⟨T (z)ϵϕ1 . . . ϕn⟩+
1

2πi

∫
C

dz̄
〈
T̄ (z̄)ϵ̄ϕ1 . . . ϕn

〉
where we used,

T = −2πTzz = −2πgzµgzνTµν = −2π 1
4
T z̄z̄ = −π

2
T z̄z̄

T̄ = −2πTz̄z̄ = −2πgz̄µgz̄νTµν = −2π 1
4
T zz = −π

2
T zz

and

ϵ = ϵz = gzµϵµ = 2ϵz̄

ϵ̄ = ϵz̄ = gz̄µϵµ = 2ϵz

If we apply, (4.4) and (4.6) to the conformal ward identity. Let ϵ(z) be holomorphic component of an infinitesimal
conformal change of coordinates. We then define the conformal charge

Qϵ =
1

2πi

∮
dzϵ(z)T (z) (4.7)

with the help of (4.4), the conformal ward identity translates into

δϵϕ = −[Qϵ, ϕ]

which means that the operator Qϵ is the generator of conformal transformation. We may expand energy-
momentum tensor according to (4.1):

T (z) =
∑
n∈Z

z−n−2Ln Ln =
1

2πi

∮
dzzn+1T (z)

T̄ (z̄) =
∑
n∈Z

z̄−n−2L̄n L̄n =
1

2πi

∮
dz̄z̄n+1T̄ (z̄)

we may also expand the infinitesimal conformal change ϵ(z) as:

ϵ(z) =
∑
n∈Z

zn+1ϵn

Then the expression, (4.7) becomes:

Qϵ =
1

2πi

∮
dz

(∑
n∈Z

zn+1ϵn

)
T (z)

=
∑
n∈Z

ϵn
1

2πi

∮
dzzn+1T (z)

=
∑
n∈Z

ϵnLn

The mode operators Ln and Lm of the energy-momentum tensor are the generators of the local conformal
transformations on the Hilbert space, exactly like ln and lm of Witt algebra. The next part is to find the
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algebra obeyed by Ln and Lm which we described in previous chapter as the central extension of Witt algebra.
We will now prove that here:

[Lm, Ln] =

∮
dz

2πi

∮
dw

2πi
zm+1wn+1[T (z), T (w)]

=

∮
dw

2πi
wn+1

∮
C(w)

dz

2πi
zm+1R

(
T (z)T (w)

)
=

∮
dw

2πi
wn+1

∮
C(w)

dz

2πi
zm+1

[
c/2

(z − w)4 +
2T (w)

(z − w)2 +
∂wT (w)

z − w

]

=

∮
dw

2πi
wn+1

[
(m+ 1)m(m− 1)wm−2 c

2 · 3! + 2(m+ 1)wmT (w) + wm+1∂wT (w)

]

=

∮
dw

2πi

[ c
12

(m3 −m)wm+n−1 + 2(m+ 1)wm+n+1T (w) + wm+n+2∂wT (w)
]

=

∮
dw

2πi

[ c
12

(m3 −m)wm+n−1 + 2(m+ 1)wm+n+1T (w) + ∂w{wm+n+2T (w)} − ∂wwm+n+2T (w)
]

=
c

12
(m3 −m) δm,−n + 2(m+ 1)Lm+n + 0−

∮
dw

2πi
(m+ n+ 2)T (w)wm+n+1

=
c

12
(m3 −m) δm,−n + 2(m+ 1)Lm+n − (m+ n+ 2)Lm+n

= (m− n)Lm+n +
c

12
(m3 −m)δm,−n.

Collectively,

[Lm, Ln] = (m− n)Lm+n +
c

12
(m3 −m)δm,−n

[Lm, L̄n] = 0

[L̄m, L̄n] = (m− n)L̄m+n +
c

12
(m3 −m)δm,−n

4.3 The Hilbert Space

The vacuum state |0⟩ in CFT must be invariant under global conformal transformation. This means the
generator of transformation

az + b

cz + d

which are L±1 and L0 must annihilate the vacuum. This, in turn is recovered from the condition that T (z) |0⟩
and T̄ (z̄) |0⟩ are well defined as z, z̄ → 0,

lim
z→0

T (z) |0⟩ = lim
z→0

∑
n∈Z

z−n−2Ln |0⟩

lim
z̄→0

T̄ (z̄) |0⟩ = lim
z̄→0

∑
n∈Z

z̄−n−2L̄n |0⟩

Here, z−(n+2) diverges at z = 0 if n+ 2 > 0, i.e. if n > −2, or equivalently n ≥ −1. Which implies, we need

Ln |0⟩ = 0

(for n ≥ −1)
L̄n |0⟩ = 0

This includes a subcondition regarding invariance of |0⟩ under global conformal group. It also implies the
vanishing of the vacuum expectation value of the energy-momentum tensor:1

⟨0|T (z) |0⟩ =
( −1∑

n=−∞
z−n−2 ⟨0|Ln

)
|0⟩+

∞∑
n=0

z−n−2 ⟨0| (Ln |0⟩) = 0

1If the vacuum is not invariant under local conformal transformation i.e. if vacuum is not annihilated by Ln for n > 1, then we
can not ensure the vanishing of vev of energy-momentum tensor.
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⟨0| T̄ (z̄) |0⟩ =
( −1∑

n=−∞
z−n−2 ⟨0| L̄n

)
|0⟩+

∞∑
n=0

z−n−2 ⟨0|
(
L̄n |0⟩

)
= 0

Primary fields, when acting on vacuum, create asymptotic states, eigenstates of the Hamiltonian. A simple
demonstration follows from the OPE (3.16) between T (z) and a primary field ϕ(z, z̄) of dimension (h, h̄),
translated into operator language:

[Ln, ϕ(w, w̄)] =
1

2πi

∮
w

dz zn+1T (z)ϕ(w, w̄)

=
1

2πi

∮
w

dz zn+1

[
hϕ(w, w̄)

(z − w)2 +
∂ϕ(w, w̄)

z − w + reg.

]
= h(n+ 1)wnϕ(w, w̄) + wn+1∂ϕ(w, w̄) (n ≥ −1)

The antiholomorphic counterpart of this relation is

[L̄n, ϕ(w, w̄)] = h̄(n+ 1)w̄nϕ(w, w̄) + w̄n+1∂̄ϕ(w, w̄) (n ≥ −1)

After applying these relations to the asymptotic state

|h, h̄⟩ ≡ ϕ(0, 0)|0⟩,

we conclude that

L0

∣∣h, h̄〉 = L0ϕ(0, 0) |0⟩
= ϕ(0, 0)L0 |0⟩+ [L0, ϕ(0, 0)] |0⟩
= 0 + hϕ(0, 0) |0⟩+ 0 = h

∣∣h, h̄〉
compactly,

L0|h, h̄⟩ = h|h, h̄⟩, L̄0|h, h̄⟩ = h̄|h, h̄⟩.

Thus |h, h̄⟩ is an eigenstate of the Hamiltonian. Likewise, we have

Ln|h, h̄⟩ = 0, L̄n|h, h̄⟩ = 0, if n > 0.

Excited states above the asymptotic state
∣∣h, h̄〉 may be obtained by applying ladder operators. The generators

L−m(m > 0) increases the eigenstate of L0 a.k.a conformal weight by virtue of virasoro algebra

[L0, L−m] = (0 +m)L0−m = mL−m

This means the excited states may be obtained by successive applications of these operators on the asymptotic
state |h⟩:

L−k1
L−k2

. . . L−kn
|0⟩ (1 ≥ k1 ≥ · · · ≥ kn)

This state is the eigenstate of L0 with eigenvalue

h′ = h+ k1 + k2 + · · ·+ kn = h+N

and these are called descendants of the asymptotic state |h⟩ and the integer N is called the level of the
descendant.

4.4 Free Boson

This section gives a detailed account of the canonical quantization of the free boson on the cylinder. The mode
expansions are obtained, after imposing the appropriate boundary conditions. The mapping from the cylinder
to the complex plane is used to define the conformal generators and, in particular, the vacuum energies. Free-
field theories are of special importance not only because they can be solved explicitly, but also because they
are the building blocks of more complicated models, or can be shown to be equivalent to interesting statistical
models.
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Mode Expansion

We let φ(x, t) be a free Bose field defined on a cylinder of circumference L:

φ(x+ L, t) ≡ φ(x, t)

This field may be Fourier expanded as follows:

φ(x, t) =
∑
n

e2πinx/L φn(t),

with Fourier coefficients

φn(t) =
1

L

∫ L

0

dx e−2πinx/L φ(x, t).

Next, we try to find the Fourier coefficients of kinetic part.

∂tφ(x, t) =
∑
n

e2πinx/L φ̇n(t),

(∂tφ)
2 =

∑
n,m

e2πi(n+m)x/L φ̇nφ̇m.

Only the m = −n term survives the integral over x, so

∫ L

0

dx (∂tφ)
2 = L

∑
n

φ̇nφ̇−n (4.8)

Similarly,

∂xφ(x, t) =
∑
n

2πin

L
e2πinx/L φn(t),

(∂xφ)
2 =

∑
n,m

2πin

L

2πim

L
e2πi(n+m)x/L φnφm.

∫ L

0

dx (∂xφ)
2 = L

∑
n

(
2πn

L

)2

φnφ−n (4.9)

Putting them in the free field Lagrangian

L =
1

2
g

∫ L

0

dx
[
(∂tφ)

2 − (∂xφ)
2
]

=
gL

2

∑
n

(
φ̇nφ̇−n −

(
2πn

L

)2

φnφ−n

)
.

The momentum conjugate to φn is

πn =
∂L
∂φ̇n

= gL φ̇−n [φn, πm] = iδnm.

The Hamiltonian is

H =
∑
n

πnφ̇n − L

=
1

2gL

∑
n

(
πnπ−n + (2πng)2 φnφ−n

)
.

Thus the system reduces to a sum of decoupled harmonic oscillators with frequencies ωn = 2π|n|
L . The usual

procedure is to define creation and annihilation operators ãn and ã†n:

ãn =
1√

4πg|n|
(2πg|n|ϕn + iπ−n) (4.10)
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such that
[
ãn, ã

†
m

]
= δn,m and [ãn, ãm] = 0. This ofcourse does not work for zero mode ϕ0. Instead we shall

use the following operators:

an =

{
−i√n ãn (n > 0)

i
√−n ã†−n (n < 0)

, ān =

{
−i√nã−n (n > 0)

i
√−nã†n (n < 0)

and we treat the zero mode ϕ0 separately. The associated commutation relations are

[an, am] = nδn+m,0, [an, ãm] = 0, [ãn, ãm] = nδn+m,0 (4.11)

The Hamiltonian is then expressible as

H =
1

2gL

∑
n

(
πnπ−n + (2πgn)2φnφ−n

)
=

π2
0

2gL
+

(2πg 0)2

2gL
ϕ20 +

1

2gL

∑
n ̸=0

(
πnπ−n + (2πgn)2φnφ−n

)
(4.12)

We start with the oscillator operators:

ãn =
1√
4πgn

(2πgnφn + iπ−n), ã†n =
1√
4πgn

(2πgnφ−n − iπn).

ã−n =
1√
4πgn

(2πgnφ−n + iπn), ã†−n =
1√
4πgn

(2πgnφn − iπ−n).

4πgn ã†nãn = (2πgn)2φ−nφn + πnπ−n + i[cross terms],

4πgn ã†−nã−n = (2πgn)2φnφ−n + π−nπn − i[same cross terms],

adding above equations,

���
2

4πgn(ã†nãn + ã†−nã−n) = �2[(2πgn)
2φnφ−n + πnπ−n] =⇒ 2πgn(ã†nãn + ã†−nã−n) = πnπ−n + (2πgn)2φnφ−n

Substituting it in (4.12),

H =
1

2gL
π2
0 +

π

L

∑
n ̸=0

n(ã†nãn + ã†−nã−n).

an = −i√nãn, a−n = a†n = i
√
nã†n, ān = −i√nã−n, ā−n = ā†n = i

√
nã†−n (n > 0).

So

nã†nãn = (i
√
nã†n)(−i

√
nãn) = a−nan, nã†−nã−n = (i

√
nã†−n)(−i

√
nã−n) = ã−nãn.

H =
1

2gL
π2
0 +

π

L

∑
n ̸=0

(a−nan + ā−nān) . (4.13)

The commutation relation (4.11), leads to

[H, a−m] =
π

L

∑
n ̸=0

[a−nan, a−m]

=
π

L

∑
n ̸=0

(
a−n[an, a−m] + [a−n, a−m]an

)
=
π

L

∑
n ̸=0

(
a−n n δn−m,0 + (−n) δ−n−m,0 an

)
=

2π

L
ma−m = −iȧ

which means for a−m(m > 0), when applied to an eigenstate of H of energy E, produces another eigenstate
with energy E + 2mπ/L. Since the fourier modes are

φn =
i

n
√
4πg

(an − ā−n)
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The mode expansion at t = 0 may be written as:

φ(x) = φ0 +
∑
n ̸=0

φne
2πinx

L = φ0 +
i√
4πg

∑
n ̸=0

1

n
(an − ã−n)e

2πinx/L

The time evolution of the operators ϕ0, an and ān in the Heisenberg picture follow from the above Hamiltonian:

[H,ϕ0] =
1

2gL
[π2

0 , ϕ0] = −
π0[ϕ0, π0] + [ϕ0, π0]π0

2gL
= − i

gL
π0 (using [φ0, π0] = i)

Hence,

φ0(t) = φ0(0) +
1

gL
π0t,

an(t) = an(0) e
−2πint/L,

ãn(t) = ãn(0) e
−2πint/L

In terms of constant operators, the mode expansion of the field at arbitrary time is then,

φcyl = φ0 +
1

gL
π0t+

i√
4πg

∑
n ̸=0

1

n

(
ane

−2πin(t−x)/L + ane
−2πin(t+x)/L

)
(4.14)

where ‘cyl’ means the field defined on the cylinder.

Relation between Cylinder and Plane

Now, we move to Euclidean space-time (t = −iτ) by taking w = τ − ix and w = τ + ix. The mode expansion
of boson field on the cylinder now is then

φcyl(w,w) = φ0 − i
1

2gL
π0(w + w) +

i√
4πg

∑
n ̸=0

1

n

(
ane

−2πnw/L + ane
−2πnw)/L

)
, (4.15)

with now w ∼ w + iL. Using a conformal transformation as in Figure 4.1, we map all the operators from the
cylinder to the complex plane:

z = e2πw/L , z = e2πw/L

we finally obtain the expansion by simply replacing w by z.

φpl(z, z) = φ0 −
i

4πg
π0 ln(zz) +

i√
4πg

∑
n̸=0

1

n
(anz

−n + anz
−n) . (4.16)

The propagator could be calculated by assuming |z| > |z′| and considering the product

φpl(w, w̄)φpl(w
′, w̄′) =

[
φ0 − i

1

4πg
π0 ln |z|2 + i

1√
4πg

∑
m̸=0

1

m
(amz

−m + amz̄
−m)

]
×
[
φ0 − i

1

4πg
π0 ln |z′|2 + i

1√
4πg

∑
n ̸=0

1

n
(anz

′−n + anz̄
′−n)

]
.

We will move annihilation operators (ak, ak with k > 0) and π0 to the right to reach normal ordering; non-
vanishing c-number contributions come from [φ0, π0] = i and [am, an] = mδm+n,0, [am, an] = mδm+n,0. Let’s
first focus on these terms(

φ0 − i
1

4πg
π0 ln |z|2

)(
φ0 − i

1

4πg
π0 ln |z′|2

)
= φ2

0 − i
1

4πg

(
φ0π0 ln |z′|2 + π0φ0 ln |z|2

)
−
( 1

4πg

)2
π2
0 ln |z|2 ln |z′|2

= φ2
0 − i

1

4πg

(
φ0π0 ln |z′|2 + (φ0π0 − i) ln |z|2

)
−
( 1

4πg

)2
π2
0 ln |z|2 ln |z′|2

= φ2
0 − i

1

4πg
φ0π0

(
ln |z′|2 + ln |z|2

)
− 1

4πg
ln |z|2 −

( 1

4πg

)2
π2
0 ln |z|2 ln |z′|2

= φ2
0 − i

1

4πg
φ0π0

(
ln |z′|2 + ln |z|2

)
−
( 1

4πg

)2
π2
0 ln |z|2 ln |z′|2︸ ︷︷ ︸

normal ordered

− 1

4πg
ln |z|2
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= :
(
φ0 − i

1

4πg
π0 ln |z|2

)(
φ0 − i

1

4πg
π0 ln |z′|2

)
: − 1

4πg
ln |z|2,

The zero-mode reordering produces the c-number − 1

4πg
ln |z|2. Next, we’ll consider holomorphic oscillator

pieces

i
1√
4πg

∑
m ̸=0

1

m
amz

−m and i
1√
4πg

∑
n̸=0

1

n
anz

′−n.

We can split the sum in two parts,

∑
m ̸=0

1

m
amz

−m =

−1∑
m=−∞

1

m
amz

−m +

∞∑
m=1

1

m
amz

−m.

The only non-normal-ordered combination producing a c-number is the product of the m > 0 part from the
first bracket with the n < 0 part from the second bracket. That term (including prefactors) is

(
i

1√
4πg

)2( ∞∑
m=1

1

m
amz

−m
)( −1∑

n=−∞

1

n
anz

′−n
)
= − 1

4πg

∞∑
m=1

−1∑
n=−∞

1

mn
aman z

−mz′−n.

Using aman =: anam : +[am, an] =: anam : +mδm+n,0. The only contributing commutator in the sum over n
occurs when n = −m. Extracting that:

− 1

4πg

∞∑
m=1

1

m(−m)
m z−mz′m = − 1

4πg

∞∑
m=1

−1
m

(z′
z

)m
= +

1

4πg

∞∑
m=1

1

m

(z′
z

)m
.

Thus the holomorphic oscillators give the c-number

1

4πg

∞∑
m=1

1

m

(z′
z

)m
.

By identical steps for am modes we obtain

1

4πg

∞∑
m=1

1

m

( z̄′
z̄

)m
.

Collecting the zero-mode, holomorphic and anti-holomorphic c-number contributions:

− 1

4πg
ln |z|2 +

1

4πg

∞∑
m=1

1

m

(z′
z

)m
+

1

4πg

∞∑
m=1

1

m

( z̄′
z̄

)m
.

We can use − ln(1− x) =∑∞
m=1 x

m/m to simplify the series expansion (valid for |z′| < |z|):
∞∑

m=1

1

m

(z′
z

)m
= − ln

(
1− z′

z

)
,

∞∑
m=1

1

m

( z̄′
z̄

)m
= − ln

(
1− z̄′

z̄

)
.

So the total c-number becomes

− 1

4πg
ln |z|2 − 1

4πg
ln
∣∣∣1− z′

z

∣∣∣2 = − 1

4πg
ln
∣∣∣z(1− z′

z

)∣∣∣2 = − 1

4πg
ln |z − z′|2.

Therefore

φpl(w, w̄)φpl(w
′, w̄′) =: φpl(w, w̄)φpl(w

′, w̄′) : − 1

4πg
ln |z − z′|2

Since we know that the normal ordered product vanishes inside correlator, the propagator could be simply read
off as:

⟨φpl(w, w̄)φpl(w
′, w̄′)⟩ = − 1

4πg
ln |z − z′|2
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This is the same as (3.18). From now on, we will drop the subscript “pl.” We know that φ is not itself a
primary field,2 but its derivatives ∂ϕ and ∂̄ϕ̄ are. Now we concentrate on the holomorphic field ∂φ

i∂φ(z) =
1

4πg

π0
z

+
1

4πg

∑
n ̸=0

anz
−n−1 =

1

4πg
a0z

0−1 +
1

4πg

∑
n ̸=0

anz
−n−1 .

We may write the zero modes by a0 and a0:
a0 ≡ a0 ≡ π0

Now the commutation relations of (4.11) can be extended to include the zero mode operator without changing
the form of the algebra. The mode expansion of ∂φ is consistent with the expansion of a primary field with
h = 1 then becomes:

i∂φ(z) =
∑
n

anz
−n−1 . (4.17)

Often the normalization of g = 1
4π is used in this kind of work. Using this mode expansion, we can also compute

the two-point function of ∂φ. For (|z| > |w|):

⟨φ(z)∂φ(w)⟩ =
∑

m,n ̸=0

1

n
⟨anam⟩ z−nw−m−1 .

According to the commutation relation (4.11) and the fact that am and a−m are annihilation and creation
operators respectively, it follows that3

⟨φ(z)∂φ(w)⟩ =
∑
n>0

∑
m ̸=0

nδn,−mz
−nw−m−1

n
=

1

w

∑
n>0

(w/z)n =
1

w

w/z

1− w/z =
1

z − w . (4.18)

Its differentiation with respect to z provides the two-point function.

⟨∂φ(z)∂φ(w)⟩ = − 1

(z − w)2 . (4.19)

The holomorphic energy-momentum tensor is given by

T (z) = −1

2
: ∂φ(z)∂φ(z) :

=
1

2

∑
n,m∈Z

z−n−m−2 : anam :=
1

2

∑
k∈Z

(∑
m∈Z

: ak−mam :

)
z−k−2

=

(
1

2
a20 +

∑
m>0

: a−mam :

)
z−2 +

∑
k ̸=0

z−k−2 1

2

∑
m∈Z

: ak−mam :

=
∑
k∈Z

z−k−2Lk

which implies

Lk =
1

2

∑
m∈Z

: ak−mam : (k ̸= 0)

L0 =
∑
m>0

a−mam +
1

2
a20 .

The Hamiltonian (4.13) now can be written as,

H =
2π

L
(L0 + L0) . (4.20)

This confirms the role of L0 and L0 as a Hamiltonian. Since we place the free boson on a cylinder of size L,
energy is proportional to 2π

L , which is called the finite-size scaling. The mode operator am plays a similar
role to Lm with respect to L0, because of the commutation relation [L0, a−m] = ma−m. Therefore its effect on
the conformal dimension is the same as that of Lm.

2Refer to equation (5.25) in Sénéchal’s CFT with h = 0 as shown in Polchinski’s String Theory, Vol. 1 (eq. 2.4.17), the
corresponding two-point function should be constant rather than logarithmic.

3⟨anam⟩ = ⟨0| aman |0⟩+ nδn,−m ⟨0|0⟩ = nδn,−m for n > 0
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By definition, the normal ordering prescription implies that ⟨T (z)⟩ = 0.4 We can always define the normal
ordering product by subtracting all the singular terms from the OPE. In fact the general expectation value for
energy-momentum tensor (3.32) can be written as

⟨T (z)⟩ = −1

2
lim
ϵ→0

(
⟨∂φ(z + ϵ)∂φ(z)⟩+ 1

ϵ2

)
. (with g = 1

4π )

We will see that this relation is useful when we consider the anti-periodic boundary condition later. By plugging
in the two-point function from (4.26), we see that ⟨T (z)⟩ = 0, which implies that (L0)pl vanishes on the vacuum.
We now map the theory back to a cylinder z → w = L

2π ln z, by using (3.37):

Tcyl(w) =

(
dw

dz

)−2 [
Tpl(z)−

1

12
{w, z}

]
=

(
L

2πz

)−2 [
Tpl(z)−

1

12

1

2z2

]
=

(
2π

L

)2[
Tpl(z)z

2 − 1

24

]
(4.21)

where we use the central charge c = 1 for the free boson. Taking the expectation value on both sides, we have

⟨Tcyl⟩ = −
1

24

(
2π

L

)2

(4.22)

On cylinder, we do Fourier expansion according to (4.1)

T (w) =
∑
n∈Z

enwLk

The mode expansion of the energy-momentum tensor tell us that this nonzero expectation value implies a
constant term in the expression for L0 in terms of modes.

L0,cyl =
1

2
a20 +

∑
n>0

a−nan −
1

24
. (4.23)

The Hamiltonian is now written as

H =
2π

L
(L0,cyl + L0,cyl) . (4.24)

Actually, in the general case, Hamiltonian of a theory defined on a cylinder with central charge c can be written
as

H =
2π

L
(L0,pl + L0,pl −

c

12
) . (4.25)

Thus, we can infer that the central charge c shows up as the vacuum energy of a theory on a cylinder, and this
is one instance of finite-size effects.

In the antiperiodic case, φ(x+ L, t) = −φ(x, t), this boundary condition implies that the field φ is double-
valued on the cylinder. Once the cylinder is mapped onto the plane, this amounts to defining the theory on a
pair of Riemann sheets. The summation index starts at n = 1

2 and takes half-integer values thereafter. The
vacuum expectation values is taken in one of the two ground states and

⟨φ(z)∂φ(w)⟩ =
∑

m,n ̸=0

1

n
⟨anam⟩ z−

2n+1
2 w− 2m+1

2 −1 =
∑
n>0

∑
m̸=0

nδn,−mz
− 2n+1

2 w− 2m+1
2 −1

n

=
1

w

∑
n≥0

(w/z)
2n+1

2 =
1

w

√
w/z

1− w/z =

√
z

w

1

z − w .

Its differentiation with respect to z provides the two-point function.

⟨∂φ(z)∂φ(w)⟩ = −1

2

√
z/w +

√
w/z

(z − w)2 . (4.26)

This expression has branch cut at z = 0,∞ and w = 0,∞; the antiperiodic boundary condition on ϕ as z circles
around the origin is incorporated in the square roots. The periodic and antiperiodic two point function coincide
in the limit z → w, meaning the short distance physics is independent of the choice of boundary conditions.
The vacuum energy density obtained from the normal ordering prescription is then,

⟨T (z)pl⟩ =
1

16z2

Since L0 is the coefficient of 1/z2 in the mode expansion of the energy-momentum tensor, this nonzero expectation
value implies a constant term in the expression for L0.

L0,pl =
1

2
a20 +

∑
n>0

a−nan +
1

16

4However, as we will see in the next section, this is not the case for the fermionic theory with anti-periodic boundary condition.
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4.5 Vertex Operator

Since canonical scaling dimension (h, h̄) of the bosonic field φ vanishes, it is possible to construct an infinite
variety of local fields related to φ without introducing a scale, namely the so called vertex operators. These
operators become relevant in string theory because their action on absolute vacuum creates the conformal
vacuum state of the theory. They are indeed primary fields and defined as:

Vα = : eiαφ(z,z̄) :

The normal ordering has the following meaning, in terms of the operators appearing in the mode expansion
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